US009317404B1

a2 United States Patent

(10) Patent No.: US 9,317,404 B1

Cohen et al. (45) Date of Patent: *Apr. 19, 2016
(54) GENERATING TEST SCENARIO TEMPLATES (56) References Cited
FROM TEST RUNS COLLECTED FROM
DIFFERENT ORGANIZATIONS U.S. PATENT DOCUMENTS
3k
(71) Applicant: Panaya Ltd., Raanana (IL) g:ggg:;;g ﬁ gﬁggg E%{;?(gl;t al s 71431
5,781,720 A * 7/1998 Parkeretal. 714/38.11
(72) Inventors: Yossi Cohen, Raanana (IL); Mati 5,905,856 A * 5/1999 OenSOOSErooeeeer... 714/38.1
Cohen, Raanana (IL); Nurit Dor, 6,360,332 B1* 3/2002 Weinbergetal. 714/4.1
Raanana (IL); Dror Weiss, Raanana (IL) g’g‘l‘g’iéz Eé * 13%88431]\SK;)qrinanuttetlal. ~~~~~~~~~~~~ 716/56
,810, einberg et al.
(73) Assignee: Panaya Ltd., Raanana (IL) g:ggg:ggi g% ggggg g;:g:ltcaﬁlesteilél.
7,032,212 B2* 4/2006 Amiretal.c.c...... 717/124
(*) Notice: Subject to any disclaimer, the term of this 7,191,435 B2* 3/2007 Lauetal. 717/168
patent is extended or adjusted under 35 7,475,289 B2* 1/2009 Rosariaetal. 714/38.1
U.S.C. 154(b) by 17 days. 7,490,319 B2* 2/2009 Blackwel_l etal. ... 717/124
7,506,211 B2* 3/2009 Apostoloiu et al. 714/38.14
This patent is subject to a terminal dis- 7,512,839 B2* 3/2009 Coulteretal. ... 714/30
claimer. 7,516,440 B2* 4/2009 Uptoncccccovevvruennenn. 717/106
Continued
(21) Appl. No.: 14/141,514 OTHEIi PUBLICA)xTIONS
(22) Filed: Dec. 27, 2013 Sreedevi Sampath, A Scalable Approach to User-session based Test-
ing ofWeb Applications through Concept Analysis, 2004.
Related U.S. Application Data (Continued)
(63) Continuation-in-part of application No. 13/103,078,
filed on May 8, 2011, now Pat. No. 8,739,128. Primary Examiner — Isaac T Tecklu
(60) Provisional application No. 61/747,313, filed on Dec. (74) Attorney, Agent, or Firm — Active Knowledge Ltd.
30, 2012, provisional application No. 61/814,305,
filed on Apr. 21, 2013, provisional application No. (57) ABSTRACT
61/919,773, filed on Dec. 22, 2013. System, method, and non-transitory medium for generating a
test scenario template involving the steps of monitoring users
(51) Int. Cl. belonging to different organizations to identify runs of test
Go6l" 9/44 (2006.01) scenarios run on software systems belonging to the different
GOGF 11/36 (2006.01) organizations; clustering the runs to clusters of similar runs;
GO6l 9/445 (2006.01) selecting a certain cluster from the clusters; and generating,
(52) US.CL based on runs belonging to the certain cluster, a test scenario
CPC ... GO6F 11/3684 (2013.01); GOGF 9/44589 template. The template may represent the certain cluster and
(2013.01); GO6F 11/3604 (2013.01) identify a transaction used in runs belonging to the certain
(58) Field of Classification Search cluster, and possible values for running the transaction.

None
See application file for complete search history.

28 Claims, 58 Drawing Sheets

r Activity
Monitoring dlaog Test
700 module identifier
702 704
Profile -
711 Cluster Clustering Subset
———— > selector —— module |— extractor
710 708 708
Template —
Template Customization
generator module
712 714
User interface Data cleaner
718 718

US 9,317,404 B1

Page 2
(56) References Cited 2008/0228805 Al* 9/2008 Brucketal. ... 707/102
2008/0263505 Al* 10/2008 StClairetal. 717/101
U.S. PATENT DOCUMENTS 2009/0106262 Al 4/2009 Fallen et al.
2009/0138855 Al* 5/2009 Hueneetal. 717/125
7,526,680 B2* 4/2009 Mathew et al. 714/37 2009/0144010 Al* 6/2009 Witteretal. 702/115
7,581,212 B2 8/2009 West et al. 2009/0183143 Al 7/2009 Lietal.
7,596,731 B1* 9/2009 Sharmacocoooe... 714/724 2009/0187894 Al* 7/2009 Belletal. ..o 717/127
7,809,525 B2 10/2010 Chagoly et al. 2009/0204591 Al* 82009 Kaksonen 707/3
7,849,447 Bl 12/2010 Karis et al. 2009/0259992 Al* 10/2009 Cormier etal. .. . 7177126
8,001,527 B1* 82011 Qureshietal. 717/120 2009/0307650 A1* 12/2009 Sarafetal. 717/101
8,205,191 B1* 6/2012 Kolawa etal. L 717/124 2010/0064282 Al* 3/2010 Triouetal. .. . 717125
8,266,592 B2* 9/2012 Beto et al. T717/124 2010/0146490 Al* 6/2010 Grosseetal. 717/131
411579 B2* 42013 Ngo etal. " 370/248 2010/0287534 Al* 11/2010 Vangala et al. 717/124
2002/0138226 Al* 9/2002 Doane ... 702/119 2010/0332535 Al* 12/2010 Weizman et al. .. 707/770
2003/0131290 Al* 7/2003 Weinberg et al. .. 714/46 2011/0145788 Al* 6/2011 Xuetal. ... - 717/121
2004/0107415 AL* 6/2004 Melamed et al. 717/124 2012/0197626 Al* 8/2012 Kejariwal et al. 703/22
2004/0123272 Al* 6/2004 Baileyetal. ... L 717/125 2012/0216176 Al* 82012 Gaikwad et al. 717/124
2005/0071818 Al1* 3/2005 Reissman et al. 717/127 2014/0115565 Al* 4/2014 Abraham et al. . 7177128
2005/0166094 Al* 7/2005 Blackwelletal. 714/38 2014/0237450 Al* 82014 Levyetal. ..o, 717/124
2006/0129994 Al* 6/2006 Srivastavaetal. 717/124
2006/0168565 Al* 7/2006 Gamma et al. .. . 717/122 OTHER PUBLICATIONS
*
%88?;832258; ﬁ} % ggggg gim?i a'l'.. v ;}Zg%g Jinhua Li, Clustering User .Session Data f.or Web Applications Test,
2007/0043980 A1* 2/2007 Ohashi et al. 714/45 2011, Journal of Computational Information Systems.
2007/0055911 A1* 3/2007 Boehm et al. 714/31 G. Ruffo, R. Schifanella, and M. Sereno, Walty: A User Behavior
2007/0220341 Al* 9/2007 Apostoloiu et al. L 714/33 Tailored Tool for Evaluating Web Application Performance, 2004,
2007/0226543 A1* 9/2007 Youngetal. 714/43 Proceedings of the Third IEEE International Symposium on Network
2008/0010537 A1* 1/2008 Hayutinetal. ... 714/38 Computing and Applications.
2008/0065687 Al* 3/2008 Coulteretal. 707/102 Sanaa Alsmadi, Generation of Test Cases From Websites User Ses-
2008/0086348 Al 4/2008 Rao et al. sions, 2011, The 5th International Conference on Information Tech-
2008/0086499 Al* 4/2008 Wefersetal. 707/102 nology.
2008/0098361 Al* 4/2008 Kumaretal. 717/128 David Leon, A Comparison of Coverage-Based and Distribution-
2008/0127095 Al* 5/2008 Brennanetal. T17/124 Based Techniques for Filtering and Prioritizing Test Cases.
2008/0141221 Al* 6/2008 Benesovskaetal. ... 717/124
2008/0184206 Al* 7/2008 Vikutan 717/127 * cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 58 US 9,317,404 B1

Q Runs of test
scenarios
A Monitoring 103 Clustering
100 module — module
102 104
? |
A Cluster selector
106
User Template Template
interface filter generator
114 112 108
T Customization
PrOﬂle — > modu'e
110 116

FIG. 1

U.S. Patent Apr. 19,2016 Sheet 2 of 58 US 9,317,404 B1

120 N Monitor users belonging to different organizations
121 N Cluster similar runs of test scenarios

'

Select a certain cluster comprising runs of test scenarios

122~ associated with different organizations
123 N Generate a test scenario template

125
Relevant

5 Profile

Suggest running the test
scenario template I~N_126

FIG. 2

U.S. Patent Apr. 19,2016 Sheet 3 of 58 US 9,317,404 B1

® . Test scenario run

* - Test scenario template

©- Orginization 128A

128C

129C 129D 129E

FIG. 3

U.S. Patent Apr. 19,2016 Sheet 4 of 58 US 9,317,404 B1

Q
A Monitoring Test Clustering
100 module identifier module
130 131 132
i
Cluster
User selector
interface 133
138
Customization Template
Data cleaner
module 136 generator
137 - 134

FIG. 4

U.S. Patent Apr. 19,2016 Sheet 5 of 58 US 9,317,404 B1

139 N Monitor users belonging to different organizations
'

140) Identify runs of test scenarios
'

141 AN Cluster similar runs of test scenarios
'

142 AN Select certain cluster

'

143 N Generate test scenario template from certain cluster

¢

144 Remove proprietary data from template
145 Customize test scenario template

FIG. 5

U.S. Patent Apr. 19,2016 Sheet 6 of 58

146

—

Template

100

147

S

US 9,317,404 B1

148

Semiautomatic

—— test scenario

executer

P

'

Test results

™\149

FIG. 6
Template
169
Runs
170
5 Customization
module
172

l

template
173

171

Customized L>>.

FIG. 7

U.S. Patent

100

Customization
module
158

User interface
157

FIG. 8

Apr. 19,2016 Sheet 7 of 58 US 9,317,404 B1
Monitoring Test Clustering
module identifier module
130 131 132
Template Cluster
Data cleaner
generator 154 selector
156 - 150

Profile
152

U.S. Patent Apr. 19,2016 Sheet 8 of 58 US 9,317,404 B1

159 N Monitor users
'
160 N Identify runs of test scenarios
'
161 N Cluster runs of test scenarios
!
162 N Receive a profile
!
163 N Select a certain cluster
!
164 N Remove proprietary data
!
165 N Generate test scenario template
!
166 N Customize the test scenario template
'
167 N Suggest the customized test scenario template

FIG. 9

U.S. Patent Apr. 19,2016 Sheet 9 of 58 US 9,317,404 B1
Q Activity
A Monitoring cé%tg Test
600 module — identifier
602 604
i
Subset
identifier
606
Template Subset
Run selector
generator 612 selector
614 o 608
Template
615
Customization Profile
module - 610

616

User interface
618

FIG. 10

US 9,317,404 B1

Subset
identifier
606

U.S. Patent Apr. 19,2016 Sheet 10 of 58
Activity
data
603 | Test
—{ identifier
604
Template Run
generator selector
614 612
Template
615

FIG. 11

Subset
selector
608

Profile
610

U.S. Patent Apr. 19,2016 Sheet 11 of 58 US 9,317,404 B1

640 N Monitor users
'
641 N Identify runs of test scenarios
'
642 N Identify subsets of frequently described test steps
'
643 N Receive a profile
'
644 N Select a certain subset based on the profile
'
645 N Select first and second runs
'
646 N Generate test scenario template
'
647 N Customize the test scenario template
!
648 N Suggest the customized test scenario template

FIG. 12

U.S. Patent Apr. 19,2016 Sheet 12 of 58 US 9,317,404 B1

660A 660B 66800 660D
Run 1 Run 2 Run 3 Run 4
Trans 001 Trans 001
Trans 002 Trans 002 Trans 004 Trans 003
Trans 004 Trans 003 Trans 005 Trans 004
Trans 005 Trans 004 Trans 006 Trans 005
Trans 008 Trans 005 Trans 008 Trans 007
Trans 010 Trans 006 Trans 011 Trans 008
Trans 012 Trans 008 Trans 012 Trans 009

664 Template

~ TN~
‘frans 004\
ITrans 005 "'\/662
\Trans 008/
~ 7

T —

FIG. 13

U.S. Patent Apr. 19,2016 Sheet 13 of 58 US 9,317,404 B1
Q Activity
A Monitoring (;%tg Test
700 module — identifier
702 704
i s
Profile -
711 Cluster Clustering Subset
— » selector module extractor
710 708 706
Template —
Template 713 Customization
generator — module
12 714

User interface

718

FIG. 14

Data cleaner
716

U.S. Patent Apr. 19,2016 Sheet 14 of 58 US 9,317,404 B1

Activity
data
203 Test Subset
— »! identifier extractor
704 706
Profile -
711 Cluster Clustering
— » selector module
710 708
Template
Template 713
generator >
712

FIG. 15

U.S. Patent Apr. 19,2016 Sheet 15 of 58 US 9,317,404 B1

740 N Monitor users
'
742 N Identify runs of test scenarios
'
744 AN Generating partial runs
'
746 AN Cluster partial runs
!
748 N Receive a profile
!
750 N Select a cluster
!
752 N Generate test scenario template
'
754 N Remove proprietary data
!
756 N Customize the test scenario template
'
758 N Suggest the customized test scenario template

FIG. 16

U.S. Patent Apr. 19,2016 Sheet 16 of 58 US 9,317,404 B1
Setup files
181b

Certain setup
file 181a
? ;
A Monitoring Test
. e Processor
100 module identifier 182
180 181 _
i
User Customization Data Template
interface module cleaner generator
189 188 186 184
FIG. 17
Descriptions
191b
Certain description
191a
e !
10 A M&g';%rlgg Processor
190 192
i
User Customization Data Template
interface module cleaner generator
198 197 196 194

FIG.

18

U.S. Patent

Apr. 19,2016 Sheet 17 of 58 US 9,317,404 B1

199 N

Monitor users belonging to different organizations

'

200 N

Identify runs of test scenarios

'

201 N

Receive setup files

!

202 N

Identify similar organizations

'

203 N

Identify run of specific test scenario

'

204 AN

Generate test scenario template

'

205 N

Remove proprietary data

'

206 N

Customize test scenario template

!

207 N

Suggest the customized test scenario template

FIG. 19

U.S. Patent

Apr. 19,2016 Sheet 18 of 58 US 9,317,404 B1

210 N

Monitor users belonging to different organizations

!

211 N

Receive descriptions

!

212 N

Identify similar organizations

'

213 N

Identify run of specific test scenario

'

214 AN

Generate test scenario template

'

215 N

Remove proprietary data

!

216 N

Customize test scenario template

'

217 N

Suggest the customized test scenario template

FIG. 20

U.S. Patent Apr. 19,2016 Sheet 19 of 58 US 9,317,404 B1

1% description 1% customization
230 | 2342
Module Component
2" description analyzer 2" customization | analyzer
2300 | 232 234b 236

Run of test scenario

239 Template
» generator
238
Template
240
User interface CUSr;OOn;LZIZtIOn Data cleaner
246 244 242

FIG. 21

US 9,317,404 B1

Sheet 20 of 58

Apr. 19,2016

U.S. Patent

19¢

OO
mWN 19¢
¢ 940 d43 Il DHO d43
Je|lus
— D99¢C — T acde D292
aooc ODINIBS A 9JIAIBS
! ! ainjoejnue
ubiseQ JWwoISNy JoWoIsN) PENTEN
a99¢ vo9e acoe vede
|eba dH (\\1 N aoueul
t11] [111
¢ 940
0p00 | 9HO
uolBZIWO}SNY €9¢ opoo

uonezZIWoISND

U.S. Patent Apr. 19,2016 Sheet 21 of 58 US 9,317,404 B1

Receive first description of customizations done to first
subset of modules

'

Receive second description of customizations done to
251 A second subset of modules

!

Identify first and second customizations to first and second
instances of a certain module

'

253 " Identify components in second instance that are similar to
components in the first

l

254 AN Receive specific run of a test scenario run to test the
second instance

'

255 . Generate test scenario template for testing the first instance

'

256 N Remove proprietary data from test scenario template

'

257 .~ Customize test scenario template for the 1% organization

'

258 N Suggest the customized test scenario template

250 N

252

FIG. 23

U.S. Patent

900

Apr. 19,2016 Sheet 22 of 58 US 9,317,404 B1
? Activity data
Monitoring y Test
903 o
module identifier
902 904
Q
A Runs
905
Test step Test step Cluster Clustering
verifier analyzer selector module
912 910 908 906
Ranked
_ runs
Ranking 916 Template Data
module — generator cleaner
914 918 920
User Customization
interface module
924 922

FIG. 24

U.S. Patent Apr. 19,2016 Sheet 23 of 58 US 9,317,404 B1
. Runs
Activity data .
vty Test 905 Clustering
903 : o
» identifier module
904 906
Test step Test step Cluster
verifier analyzer selector
912 910 908
Ranked
_ runs
Ranking 916
module —
914

FIG. 25

U.S. Patent Apr. 19,2016 Sheet 24 of 58 US 9,317,404 B1

279 N Monitor users running test scenarios
l
280 N Identify runs of test scenarios
'
281 N Cluster runs of the test scenarios
l
282 N Select certain cluster
'
283 Identify potentially unessential test steps

'

284 N Count users that ran potentially unessential test steps

!

Label potentially unessential test steps as verified

285 N unessential test steps bases on counts of users
286 Rank runs in certain cluste}based on number of verified
l unessential test steps in the runs
!
287 N Generate test scenario template
!
288 N Customize the test scenario template
'
289 N Suggest the customized test scenario template

FIG. 26

U.S. Patent Apr. 19,2016 Sheet 25 of 58 US 9,317,404 B1

Q
A 0 Monitoring
930 module
A | M
i v
Activity data
933
Test
identifier
934
1st
processor
936 Ranking
module
944
Clustering 2
module processor
940 938
Ranked
runs
Cluster 945
selector
942
Template
generator
946
Data User
cleaner interface
948 949

FIG. 27

U.S. Patent Apr. 19,2016 Sheet 26 of 58 US 9,317,404 B1

Activity data
933 Test
— identifier
934
1 st
processor
936 Ranking
module
944
Clustering ond
module processor
940 938
Ranked
runs
945
\

FIG. 28

U.S. Patent Apr. 19,2016 Sheet 27 of 58 US 9,317,404 B1

300 N Monitor users running test scenarios
301 N Identify runs of test scenarios
302 N Receive selection of transaction type

!

Calculate first number of organizations associated with
303] users that ran test scenarios that executed instantiations of
the transaction type

!

304 N Cluster runs of test scenraios
305 N Receive selection of certain cluster

v

Calculate second number of organizations associated with
runs in certain cluster that involved executed instantiations
of the transaction type

Y

307 . Rankruns of test scenarios according calculated values

:

306 N

308 N Generate test scenario template
309a..M Remove proprietary data from the template
309b. N Suggest the test scenario template

FIG. 29

U.S. Patent Apr. 19,2016 Sheet 28 of 58 US 9,317,404 B1

311 312 314

Q
A Monitoring Interface Clustering
310—_" module module
L 5

Template Rating Organization
generator module counter
320 318 316
Data User
cleaner interface
322 326

FIG. 30

U.S. Patent Apr. 19,2016 Sheet 29 of 58 US 9,317,404 B1

330 N Monitor users running test scenarios

!

Receive runs of test scenarios associated with different
organizations

Y

332 N Cluster the test scenarios into clusters

l

Count number of different organizations associated with test

333N scenarios belonging to clusters
'

334 A Rate popularity clusteorfgt;iiszeao{igzsnumber of associated
!

336 N Generate test scenario template
!

338 N Suggest the test scenario template

FIG. 31

350

U.S. Patent Apr. 19,2016 Sheet 30 of 58 US 9,317,404 B1
Q
o Activity data
Monitoring 353 Test
module — identifier
352 354
i
Y
N~
i e || o,
routes DB
360 358 356
~_
Manipulated
template _
Template 363 Ranking
manipulator — module
362 364
User Data
interface cleaner
368 366

FIG. 32

Sheet 31 of 58

US 9,317,404 B1

U.S. Patent Apr. 19, 2016
Activity data
353 Test Route
— » identifier analyzer
354 356
eme || Boe || Dvergen
routes DB
362 360 358
Manipulated
template
363 FIG. 33
Y
794 \‘
Tx1: Tx1: Tx1: Tx2: Tx2:
Scr1 Scr 2 Scr3 Scr 4 Scr5
Tx1: | 795 796
Scr7 '/'
Tx1: Tx1: Tx1: Tx2: Tx2:
Scr 1 Scr2 Scr3 Scr 4 Scrb
797 \‘
Tx1: Tx1:] Tx1: Tx1: Tx2: Tx2:
Scr 1 Scr 2 Scr7 Scr 3 Scr 4 Scr 5

FIG. 34

U.S. Patent Apr. 19,2016 Sheet 32 of 58 US 9,317,404 B1

370 N Monitor users running test scenarios
371 N Identify runs of test scenarios

'

Receive certain run of a test scenario instantiated from a
372 A template

,

373 Identify certain divergent route that diverges from the
) template route
374 N Store the divergent route in a database

l

Count number of divergent routes in the database
375 N essentially the same to the certain divergent route

l

Manipulate test scenario template according to the divergent
376 N routes if the number reaches threshold

l

377 1 Remove proprietary data from the manipulated template

'

378 N Suggest the manipulated test scenario template

FIG. 35

U.S. Patent Apr. 19,2016 Sheet 33 of 58 US 9,317,404 B1

380 N Monitor users running test scenarios
381 N Identify runs of test scenarios

Y

Receive certain run of a test scenario instantiated from a
) first template

!

Identify certain divergent route diverging from first template

382

383 Ve route
384 N Store the certain divergent route

!

Receive second template route belonging to a second test
scenario template

!

Count number of divergent routes in database that are
386 N essentially the same as the second template route

l

Manipulate second test scenario template according to the
387 N divergent routes if the number reaches a threshold

!

Remove proprietary data from the manipulated second test

385)

388 7 scenario template
389 N Suggest the manipulated test scenario template

FIG. 36

U.S. Patent Apr. 19,2016 Sheet 34 of 58 US 9,317,404 B1

Q
A o Activity data
Monitoring 353 Test
350 module — identifier
352 354
X
Template
route
390
Route - Route
retriever Routes DB analyzer
393 392 391
Manipulated
template
Subset Template 399 Ranking
selector manipulator module
394 395 396
User Data
interface cleaner
398 397

FIG. 37

U.S. Patent Apr. 19,2016 Sheet 35 of 58 US 9,317,404 B1

Activity data
353 Test
» identifier
354
Template
route
390
Route Route
retriever Routes DB analyzer
393 392 391
Manipulated
template
Subset Template 399
selector manipulator >
394 395

FIG. 38

U.S. Patent Apr. 19,2016 Sheet 36 of 58 US 9,317,404 B1

400 N Monitor users running test scenarios
!
401 N Identify runs of test scenarios
l
402 AN Receive a run of a test scenario
!
403 N Identify a route that the run follows
!
404 AN Store the route in a database
!
405 N Receive certain template route
!
406 Retrieve from database divergent routes
!
407 N Select a subset of the divergent routes
I
408 N Manipulate the template according to the subset
'
409 <1 Remove proprietary data from the manipulated template
'
410 N Suggest the manipulated test scenario template

FIG. 39

U.S. Patent Apr. 19,2016 Sheet 37 of 58 US 9,317,404 B1

Q
. . 1St
Monitoring Test i
420 module identifier connecton
421 422 generator
Q T T 424
2nd
User Template Clustering .

. connection
interface generator module generator
434 432 425 426

Template Cluster Weighting
selector selector module
430 428 427

Certain
conf
elements
429

FIG. 40

U.S. Patent Apr. 19,2016 Sheet 38 of 58 US 9,317,404 B1

688 N Monitor users running test scenarios
689 N Identify runs of test scenarios

'

Generate first connections between configuration elements
and runs of test scenarios

'

691 N Cluster the runs of test scenarios

'

Generate second connections between configuration

690 N

692 A elements and clusters
Weight the second connections based on the number of
693 N

users that acted on the second connections

'

694 N Receive certain configuration elements

'

Select certain cluster for which sum of weights of second
695 . connections, between a subset of the certain configuration
elements and the certain cluster, reaches a threshold

'

696 .~ Generate test scenario template representing certain cluster

'

897] Select test scenario template to represent certain cluster

Y

698 N Suggest the test scenario template

FIG. 41

U.S. Patent Apr. 19,2016 Sheet 39 of 58 US 9,317,404 B1

435 438 \' 439 437 435 o 437
PR
E, G E, Cr
Es ' Es :
AT -
" 4”\ lr: Ex
e ' > Ci . Cy
En ‘ Em/
. S, :q
En e v En 7C

U.S. Patent Apr. 19,2016 Sheet 40 of 58 US 9,317,404 B1
Q
A Monitoring Test User
450 module identifier interface
451 452 472
i
2nd
. Template
Clustering
generator
module 471
465 -
1St
. Connection Template
Interface Clustering
generator selector
461 module 466 470
462 - -
Conf
changes Weighting Connection
460 module selector
467 468
Certain
conf
change
469

FIG. 44

U.S. Patent Apr. 19,2016 Sheet 41 of 58 US 9,317,404 B1

474 AN Receive configuration changes
475 AN Cluster configuration changes into clusters

'

Identify runs of test scenarios run to test the configuration

476 N

changes
477 N Cluster the runs to clusters of similar runs
478 Generate connections between the clusters of similar
) configuration changes and the clusters of similar runs
Weight the connections based on number of different
479 N

organizations associated with each connection

'

480 N Receive a certain configuration change

l

Selecting certain connection weighted above threshold
481 < petween cluster of configuration changes and certain cluster
of runs

l

Select a test scenario template representing the certain
cluster

482 N

FIG. 45

U.S. Patent

670

Apr. 19, 2016 Sheet 42 of 58 US 9,317,404 B1
Q
1St
Monitoring Test "
module identifier cg:gﬁlczlec;n
671
3 2H or2 673
2nd
Clustering :
connection
module analyzer
674 675
User Template Template Cluster
interface selector generator identifier
680 679 678 676
Certain conf
change 677

FIG. 46

U.S. Patent Apr. 19,2016 Sheet 43 of 58 US 9,317,404 B1

490 N Monitor users running test scenarios

'

Identify runs of test scenarios run by the users to test

491N configuration changes
492 A Identify first connections between configuration changes

and the runs

l

493 N Cluster the runs to clusters of similar runs

l

Identify second connections between configuration changes
and clusters

'

495 N Receive certain configuration change

l

Identify cluster of similar runs that correspond to the certain

494 A

496 N : :
configuration change
Generate test scenario templates based on runs belonging
497 N)
to the certain cluster
498 A Select representative test scenario from the certain cluster

based on number of different organizations associated with
the templates

FIG. 47

U.S. Patent

Apr.19,2016 Sheet 44 of 58 US 9,317,404 B1
Q
A Monitoring
500 module
502
Q v
A 3rd
Activity weighting
data 503 module
915
15t .
weighting ;?glwlztgr
module oos 1% set of
513 S links 534
Dependency
2nd set of module
Configuration links 538 208
elements 536 Static —
analysis
Code of software module
system 506 507
Dependencies
509
2nd
weighting
module
514 Template
selector
Certain
configuration
element 511
User
interface
FIG. 48 512

U.S. Patent Apr. 19,2016 Sheet 45 of 58 US 9,317,404 B1

Activity L
data 503 Activity
» analyzer 1% set of
504 links 534
Dependency
. module
Configuration ﬁnk:e;;g 208
elements 536 | Static —
analysis
Code of software module
systems 506 507
> —
Dependencies
509 \

FIG. 49

U.S. Patent Apr. 19,2016 Sheet 46 of 58 US 9,317,404 B1

Monitor activity of users belonging to different
520N organizations

!

5211 Receive activity data form monitoring the users

!

Generate 1% set of links between transactions
522v1 and code elements associated therewith

523 Receive configuration elements

!

524 1 Receive certain configuration elements

Y

Generate 2™ set of links between the
525] certain configuration change and code
elements influenced thereby

v '

526 . Identify dependencies between the transactions and the
configuration elements

Y

527 A Receive certain configuration element

Y

528 N Select template to test a transaction dependent on the
certain configuration element

v

Suggest template to a user

529 N

FIG. 50

US 9,317,404 B1

Sheet 47 of 58

Apr. 19,2016

U.S. Patent

zes
suonoesuel |

€S S|
0188 ()

IS "OId

0¢€g
S1USWSId BP0

8EG Syul|
10195 .2

9¢g
sjuswaje uoneinbipuod

U.S. Patent Apr. 19,2016 Sheet 48 of 58 US 9,317,404 B1

Q
A Monitoring
540 module
241
i
Activity 3
data 242 weighting
module
1 Activit 296
weighting anc;INIzZr
module 5 ‘}3
554 =
Intersection Transaction
Certain module identifier
configuration 548 550
change 544
> Program
Program data analyzer
245 > 240 Certain
transaction
551
2nd
weighting Template
module selector
595 557
User
interface
558

FIG. 52

U.S. Patent Apr. 19, 2016

Activity data 542

Configuration
change 544

Program data
545

Sheet 49 of 58 US 9,317,404 B1
Activity
»| analyzer
543
Intersection Transaction
module identifier
248 550
» Program
analyzer l
546
-
Certain
transaction
551

FIG. 53

U.S. Patent Apr. 19,2016 Sheet 50 of 58 US 9,317,404 B1

Monitor activity of users belonging to

959V different organizations
560N Receive activity data

l

ldentify 1% set of code elements
associated with transactions

561N

562 Receive configuration change and
program data
563 Identify 2" set of code elements
influenced by the configuration change

! '

564 Intersect first and second sets

l

Identify certain transaction likely to be impacted by the
565 configuration change
566 Select template to test the certain transaction
y
567 ~) Suggest the template to a user

FIG. 54

U.S. Patent Apr. 19,2016 Sheet 51 of 58 US 9,317,404 B1

Q Activity data
A Monitoring 802 Transaction
800 module identifier
801 804
i
Transaction Profile
- » recommender generator
Proﬂlg of the 806 805
certain user
807 Certain
transaction
808
Template Customization User
generator module interface
810 812 813
FIG. 55
Certain
transaction —
808 Template Customization User
» selector module interface
815 812 813

FIG. 56

U.S. Patent Apr. 19,2016 Sheet 52 of 58 US 9,317,404 B1

820 N Monitor activity of users
821 N Identify execution of transactions

l

822 N Generate profiles of users based on the transactions

l

823 N Receive a profile of the certain user

,

Select, based on profiles, the certain transaction for the
certain user

!

Select test scenario template that executes the certain
transaction

!

826 N Suggest the test scenario template

825 N

FIG. 57

U.S. Patent

Apr. 19,2016 Sheet 53 of 58 US 9,317,404 B1
o Runs
Monitoring Test 853 Template
850 ’\j module identifier — identifier
851 852 854
Profil ¢ Profile of
rofiles of users -
859 Profile certain user Profile
=== 857
»| comparator generator
858 856
Template
selector
860
Certain
template
862

User Customization
. Data cleaner
interface module 866

870 868 —

FIG

. 58

U.S. Patent Apr. 19,2016 Sheet 54 of 58 US 9,317,404 B1

Runs
853 Template Profile
» identifier generator
854 856
Profile of
certain user
857
Profiles of users Profile
859 | comparator
858
Certain
template
862 Template
- selector
860

FIG. 59

U.S. Patent Apr. 19,2016 Sheet 55 of 58 US 9,317,404 B1

880 N Monitor certain user running test scenarios
882 N Identify runs of test scenarios run by the users
884 N Receive the runs

:

886 . ldentify from the runs templates utilized by the certain user

'

888 N Generate a profile of the certain user
Receive profiles of users belonging to different
890 A T
organizations

Identified at least one profile of a user similar to the profile
of the certain user?

Yes
No

894 .~ Select certain template appropriate
for the certain user

|

896 | Suggest to the certain user to run an
instantiation of the certain template

892 N

Y
Indicate that no template is selected

898 for the certain user

FIG. 60

U.S. Patent

Apr. 19,2016 Sheet 56 of 58 US 9,317,404 B1
Template Ranking Data Customization
generator module cleaner module
770 771 172 773
User
F1G. 61A interface
74
Template Ranking Data Customization
generator module cleaner module
70 71 172 73
FI1G. 61B
Template Customization Data ,
User interface
generator module cleaner 277
770 175 76 —
FIG. 61C
Template Data Customization .
User interface
generator cleaner module 777
770 778 779 -

FIG. 61D

U.S. Patent

Apr. 19,2016 Sheet 57 of 58 US 9,317,404 B1
Template Data User Ranking
generator cleaner interface module
770 780 781 782
FIG. 61E
Template Customization User
: Data cleaner
generator module interface 785
70 175 734 .
FIG. 61F
Template User
generator interface
170 774

FIG. 61G

U.S. Patent Apr. 19,2016 Sheet 58 of 58 US 9,317,404 B1

790\

Scr 1 Scr 2 Scr 3 Scr 4 Scr5 Scr6 Scr7

FIG. 62A
791
\ Scr 9 —Scr 10
Scr 11— Scr 2 slscr4 Scr 5 |— Scr6 —{scr 7
FIG. 62B

792
\y Scr9 Scr 11

Scr 1 Scr 2 Scr3 Scr4

FIG. 62C

793 \'

Scr8 Scr 9 Scr 12 —|\
Scr 4 Scr 5 Scr6 Scr7

FIG. 62D

US 9,317,404 B1

1
GENERATING TEST SCENARIO TEMPLATES
FROM TEST RUNS COLLECTED FROM
DIFFERENT ORGANIZATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application is a Continuation-In-Part of application
Ser. No. 13/103,078, filed May 8, 2011. This Application
claims the benefit of U.S. Provisional Patent Application No.
61/747,313, filed Dec. 30, 2012, and U.S. Provisional Patent
Application No. 61/814,305, filed Apr. 21, 2013. This appli-
cation also claims the benefit of U.S. Provisional Patent
Application No. 61/919,773, filed Dec. 22, 2013, the entire
contents of which is herein incorporated by reference in its
entirety for all that it teaches without exclusion of any part
thereof.

The following co-pending U.S. patent applications, filed
on Dec. 27, 2013: Ser. Nos. 14/141,564; 14/141,588; 14/141,
623; 14/141,655; 14/141,676; 14/141,726; 14/141,859;
14/141,887; 14/141,925; 14/141,974, and the following co-
pending U.S. patent applications, filed on Dec. 28, 2013: Ser.
Nos. 14/142,768; 14/142,769; 14/142,770; 14/142,771,
14/142,772; 14/142,774; 14/142,781; 14/142,783; 14/142,
784, may include related subject matter.

BACKGROUND

Organizations that install, upgrade, maintain, and/or cus-
tomize software systems (e.g., SAP ERP, or Oracle EBS),
need to run many tests in order to validate the correctness of
the software systems. Due to the large scale of such software
systems, the testing and validation of the systems is a labori-
ous task, often requiring several man-years to complete. In
addition, it is often difficult for testers belonging to an orga-
nization to construct or select test scenarios that are likely to
be relevant to their organization and be effective for the vali-
dation task at hand.

A software system belonging to an organization may be
quite complex, containing a large number of software mod-
ules, and it may also be customized specifically for the orga-
nization (e.g., due to a selection of a specific set of software
module and/or organization-specific customizations to soft-
ware modules). However, software systems belonging to dif-
ferent organizations often utilize the same or similar software
modules and may involve similar customizations. For
example, software systems belonging to different organiza-
tions in the same field of operations may involve similar
customizations that are related to the field of operations.
Additionally, software systems of different organizations
may involve similar updates, such as when a new build of a
generic software module is released. Thus, despite organiza-
tion-specific differences in software systems of different
organization, it is often the case that testers belonging to the
different organizations end up running the same, or quite
similar, tests on their respective systems.

Current testing approaches adopted by many organizations
require each organization to devise its own testing suite. Thus,
each organization needs to learn which tests are effective,
which aspects of the software system should be tested, and
how to do so in a cost-effective way. Gaining this knowledge
may require much effort and experience; in the meantime,
testing the software systems may be a less effective and
prolonged process. However, were organizations able to uti-
lize each other’s testing-related knowledge, which is in a
sense a wisdom of the crowd (of testers), they might be able
to come up with a more effective and efficient testing plan.

10

15

20

25

30

35

40

45

50

55

60

65

2

That being said, there are many obstacles in the way of har-
nessing the wisdom of the crowd when it comes to testing. For
one, software systems belonging to different organizations
may each be customized for their respective organizations.
Thus, it is not likely that a test scenario devised for a first
organization will run “as is” on a system belonging to a
second organization. Additionally, test scenarios used to test
a system belonging to an organization often contain propri-
etary data related to the organization; organizations are not
likely to share their testing data if it means that in the process,
their proprietary data is at risk of being leaked to an unautho-

rized party.
BRIEF SUMMARY

Some aspects of this disclosure involve methods, systems,
and/or non-transitory computer-readable medium that enable
generation and/or suggestion of test scenario templates that
are relevant for validating a software system. The test sce-
nario templates are generated based on data collected from
users that may be considered crowd users (e.g., testers from
other organizations), tasked with testing similar software sys-
tems. Optionally, test scenario templates may enable utiliza-
tion of the wisdom of the crowd for testing. With the tem-
plates, organizations may efficiently obtain test scenarios that
are effective for their systems and also export such knowledge
to be used by other organizations.

In one embodiment, a test scenario template is a model
according to which a test scenario may be structured. A test
scenario template may include one or more test steps, which
instruct a user on an action to be performed as part of the test,
such as where to enter a value, what button to push, what
screen to select, or what transaction to run. Optionally, a test
scenario template may include one or more default values
used for running an instantiation of the test scenario template
(e.g., default values for certain fields in a screen).

In one embodiment, runs of test scenarios are clustered into
clusters that contain similar runs of test scenarios. Addition-
ally, a test scenario template is generated from a cluster of
runs of test scenarios that come from multiple organizations.
This may enable generation of a test scenario template from
runs that have been used by many users from multiple orga-
nizations (e.g., runs from a large cluster, and/or a cluster with
runs from many organizations), and thus is likely to be useful
for other organizations as well. Additionally, utilizing a clus-
ter of runs may also enable determination of default values for
the test scenarios template (e.g., values used by many orga-
nizations) and/or it may enable removal of proprietary data
from the template (e.g., values used by a small number of
organizations).

One aspect of this disclosure involves a computer system
configured to generate a test scenario template. The computer
system includes a monitoring module that is configured to
monitor users belonging to different organizations to identify
runs of test scenarios run on software systems belonging to
the different organizations. The computer system also
includes a clustering module that is configured to cluster the
runs of the test scenarios to clusters that include similar runs
of'test scenarios. Optionally, the clustering module is config-
ured to process one or more of the following logged activities:
a list of users who ran the test scenarios, an analysis of access
to a database, messages returned from executed transactions,
values returned by fields, and procedures utilized by a test
scenario. A cluster selector included in the computer system
is configured to select from the clusters a certain cluster that
includes a first run of a first test scenario and a second run of
a second test scenario. The first run is associated with a first

US 9,317,404 B1

3

organization belonging to the different organizations, and the
second run is associated with a second organization belong-
ing to the different organizations. Additionally, the first run is
notidentical to the second run, and the first organization is not
the second organization. The computer system also includes
a template generator that is configured to generate a test
scenario template based on the first and second runs. The test
scenario template identifies a transaction, used in the first and
second runs, and possible values for running the transaction.
Optionally, the template generator may also be configured to
remove from the test scenario template proprietary data cap-
tured by the monitoring module. Optionally, the computer
system may also include a template filter that is configured to
receive a profile of a certain user and to test whether the test
scenario template is relevant to the certain user based on the
user profile. Additionally or alternatively, the computer sys-
tem may include a user interface, coupled to the template
filter, which is configured to suggest a relevant test scenario
template to the certain user.

Another aspect of this disclosure involves a computer
implemented method for generating a test scenario template.
Executing the method may involve performing the following:
Monitoring users belonging to different organizations to
identify runs of test scenarios run on software systems
belonging to the different organizations. Clustering the runs
to clusters that include similar runs of test scenarios. Select-
ing from the clusters a certain cluster that includes a first run
of a first test scenario and a second run of a second test
scenario. The first run is associated with a first organization
belonging to the different organizations, and the second run is
associated with a second organization belonging to the dif-
ferent organizations. Additionally, the first run is not identical
to the second run, and the first organization is not the second
organization. And generating, based on the first and second
runs, a test scenario template representing the certain cluster.
The test scenario template identifies a transaction used in the
first and second runs, and possible values for running the
transaction. Optionally, the test scenario template includes
values, captured during the monitoring, which appear in at
least one of the first and second runs. In one embodiment, the
method also involves removing from the test scenario tem-
plate proprietary data captured from monitoring the users.
Optionally, data captured from monitoring the users is con-
sidered proprietary if it appears in runs of less than a prede-
termined number of the users.

Yet another aspect of this disclosure involves a non-transi-
tory computer-readable medium for use in a computer to
generate a test scenario template. The computer includes a
processor, and the non-transitory computer-readable medium
includes the following program code: Program code for
monitoring users belonging to different organizations to iden-
tify runs of test scenarios run on software systems belonging
to the different organizations. Program code for clustering the
runs of the test scenarios to clusters that include similar runs
of'test scenarios. Program code for selecting from the clusters
a certain cluster that includes a first run of a first test scenario
and a second run of a second test scenario. The first run is
associated with a first organization belonging to the different
organizations, and the second run is associated with a second
organization belonging to the different organizations. Addi-
tionally, the first run is not identical to the second run, and the
first organization is not the second organization. And program
code for generating, based on the first and second runs, a test
scenario template representing the certain cluster. The test

10

15

20

25

30

35

40

45

50

60

65

4

scenario template identifies a transaction used in the first and
second runs and possible values for running the transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are herein described, by way of example
only, with reference to the accompanying drawings. In the
drawings:

FIG. 1 illustrates one embodiment of a computer system
configured to generate a test scenario template;

FIG. 2 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template;

FIG. 3 is a schematic illustration of runs of test scenarios,
clusters, and templates;

FIG. 4 illustrates one embodiment of a computer system to
generate a customized test scenario template;

FIG. 5 illustrates one embodiment of a computer imple-
mented method for generating a customized test scenario
template;

FIG. 6 illustrates one embodiment involving a user that
performs a semiautomatic run of a test scenario that is an
instantiation of a test scenario template;

FIG. 7 illustrates one embodiment involving a test scenario
template being customized using a customization module;

FIG. 8 illustrates one embodiment of a computer system
configured to generate a test scenario template based on a user
profile;

FIG. 9 illustrates one embodiment of a computer imple-
mented method for generating a customized test scenario
template based on a user profile;

FIG. 10 illustrates one embodiment of a computer system
configured to generate a test scenario template from runs of
test scenarios that include a subset of test steps;

FIG. 11 illustrates one embodiment of a computer system
configured to generate a test scenario template from runs of
test scenarios that include a subset of test steps;

FIG. 12 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from
runs of test scenarios that include a subset of test steps;

FIG. 13 illustrates generation of a test scenario template
from a subset of test steps that is frequently executed as part
of running test scenarios;

FIG. 14 illustrates one embodiment of a computer system
configured to generate a test scenario template from a cluster
of similar partial runs of test scenarios;

FIG. 15 illustrates one embodiment of a computer system
configured to generate a test scenario template from a cluster
of similar partial runs of test scenarios;

FIG. 16 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from a
cluster of subsets of test steps taken from runs of test sce-
narios;

FIG. 17 illustrates one embodiment of a computer system
configured to generate a test scenario template based on simi-
larity between setup files associated with different organiza-
tions;

FIG. 18 illustrates one embodiment of a computer system
configured to generate a test scenario template based on simi-
larity between descriptions associated with different organi-
zations;

FIG. 19 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template based
on similarity between setup files associated with different
organizations;

FIG. 20 illustrates a computer implemented method for
generating a test scenario template based on similarity
between descriptions with different organizations;

US 9,317,404 B1

5

FIG. 21 illustrates one embodiment of a computer system
configured to generate a test scenario template from data
collected from users running test scenarios to test vendor-
customized packaged application modules;

FIG. 22 illustrates similar modules detected based on
descriptions of two organizations;

FIG. 23 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from
data collected from users running test scenarios to test ven-
dor-customized packaged application modules;

FIG. 24 illustrates one embodiment of a system configured
to rank similar runs of test scenarios based on unessential test
steps in the runs;

FIG. 25 illustrates one embodiment of a system configured
to rank similar runs of test scenarios based on unessential test
steps in the runs;

FIG. 26 illustrates one embodiment of a computer imple-
mented method for ranking similar runs of test scenarios
based on unessential test steps in the runs;

FIG. 27 illustrates one embodiment of a computer system
configured to rank runs of test scenarios belonging to a clus-
ter;

FIG. 28 illustrates one embodiment of a computer system
configured to rank runs of test scenarios belonging to a clus-
ter;

FIG. 29 illustrates one embodiment of a computer imple-
mented method for ranking runs oftest scenarios belonging to
a cluster of similar runs;

FIG. 30 illustrates one embodiment of a computer system
configured to rate popularity of a cluster of runs of test sce-
narios;

FIG. 31 illustrates one embodiment of a computer imple-
mented method for rating popularity clusters of runs of test
scenarios;

FIG. 32 illustrates one embodiment of a computer system
configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs;

FIG. 33 illustrates one embodiment of a computer system
configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs;

FIG. 34 illustrates updating of a test scenario template
according to divergent routes;

FIG. 35 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template;

FIG. 36 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template;

FIG. 37 illustrates one embodiment of a computer system
configured to utilize routes followed by runs of test scenarios
to manipulate a test scenario template;

FIG. 38 illustrates one embodiment of a computer system
configured to utilize routes followed by runs of test scenarios
to manipulate a test scenario template;

FIG. 39 illustrates one embodiment of a computer imple-
mented method for utilizing routes followed by runs of test
scenarios to manipulate a test scenario template;

FIG. 40 illustrates one embodiment of a computer system
configured utilize data collected from users belonging to dif-
ferent organizations to select a test scenario template relevant
for testing configuration elements;

FIG. 41 illustrates one embodiment of a computer imple-
mented method for utilizing data collected from users belong-
ing to different organizations to select a test scenario template
relevant for testing configuration elements;

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 42 illustrates a process in which second connections
are generated from first connections and results of clustering;

FIG. 43 illustrates a selection of the certain cluster;

FIG. 44 illustrates one embodiment of a computer system
configured select a test scenario template relevant for testing
a configuration change;

FIG. 45 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template relevant
to a configuration change;

FIG. 46 illustrates one embodiment of a computer system
configured select a test scenario template relevant for testing
a configuration change;

FIG. 47 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template useful
for testing a configuration change;

FIG. 48 illustrates one embodiment of a computer system
configured to identify dependencies between configuration
elements and transactions;

FIG. 49 illustrates one embodiment of a computer system
configured to identify dependencies between configuration
elements and transactions;

FIG. 50 illustrates one embodiment of a computer imple-
mented method for identifying dependencies between con-
figuration elements and transactions;

FIG. 51 illustrates one way of forming dependencies
between transactions and configuration elements;

FIG. 52 illustrates one embodiment of a computer system
configured to identify a certain transaction likely to be
impacted by a certain configuration change;

FIG. 53 illustrates one embodiment of a computer system
configured to identify a certain transaction likely to be
impacted by a certain configuration change;

FIG. 54 illustrates one embodiment of a computer imple-
mented method for identifying a certain transaction likely to
be impacted by a certain configuration change;

FIG. 55 illustrates one embodiment of a computer system
configured to select a transaction for a certain user based on
similarity of a profile of the certain user to profiles of users
belonging to different organizations;

FIG. 56 illustrates one embodiment in which a transaction
is provided to a template selector;

FIG. 57 illustrates one embodiment of a computer imple-
mented method for selecting a transaction for a certain user
based on similarity of a profile of the certain user to profiles of
users belonging to different organizations;

FIG. 58 illustrates one embodiment of a computer system
configured to select a test scenario template for a certain user
based on similarity of a profile of template utilization by the
certain user to profiles of template utilization by other users;

FIG. 59 illustrates one embodiment of a computer system
configured to select a test scenario template for a certain user
based on similarity of a profile of template utilization by the
certain user to profiles of template utilization by other users;

FIG. 60 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template for a
certain user based on similarity of a profile of template utili-
zation by the certain user to profiles of template utilization by
other users;

FIG. 61A illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 61B illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 61C illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 61D illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

US 9,317,404 B1

7

FIG. 61E illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 61F illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 61G illustrates a combination of system modules that
may be used in embodiments described in this disclosure;

FIG. 62A illustrates a template route that includes a
sequence of seven screens;

FIG. 62B illustrates a divergent route that diverges from the
template route and later on converges back to the template
route;

FIG. 62C illustrates a divergent route that diverges from the
template route and does not converge back to the template
route; and

FIG. 62D illustrates a divergent route that merges with the
template route.

DETAILED DESCRIPTION

The term “transaction” is defined as a computer program,
such as SAP ERP transaction or Oracle Application Form. In
one example, a transaction may enable a user to access a
certain functionality and/or may be called by filling its code in
a box in a screen and/or by selecting it from a menu. In
another example, a transaction is a logical portion of work,
performed by a processor, involving the execution of one or
more SQL statements.

The term “test step” refers to one or more actions per-
formed via a User Interface (UI) as part of running a test
scenario. In some cases, performing actions via a user inter-
face may be achieved by interacting with the user interface,
and/or by interacting with an Application Program Interface
(API) related to the user interface.

The terms “a description of a run of a test scenario”, also
referred to as “a run of a test scenario”, refer to data pertaining
to running a test scenario on a software system (e.g., inputs,
outputs, and/or intermediate data generated prior to running
the test scenario, data generated during its run, and/or data
generated as a result of running the test scenario). In one
example, a run of test scenario may be obtained from moni-
toring a user running the test scenario on a software system. In
the interest of brevity, in this disclosure, a term like “run of a
test scenario” may be replaced with the shorter “run”, where
it is clear from the context. A run of a test scenario may be
referred to as being “run by a user”. This means that data
included in the run of'the test scenario is related to, or gener-
ated from, activity of the user on a software system, in which
test steps of the test scenario were executed. Optionally, at
least some of the data included in the run of the test scenario
is derived from monitoring the activity of the user, which is
related to execution of the test steps. Additionally, a run of a
test scenario may be referred to as being associated with an
organization, meaning that the run of the test scenario was run
by a user belonging to the organization. Optionally, the user
belonging to the organization ran the test scenario, at least in
part, on a software system that belongs to the organization.
Moreover, if it is mentioned, for example, that runs of test
scenarios are received or clustered, it is meant that the objects
being received may be processed descriptions of the runs of
test scenarios (e.g., describing various attributes of the runs of
the test scenarios), and not necessarily the actual raw
recorded data that was initially obtained from monitoring
users running the test scenarios.

A run of a test scenario may be considered an instantiation
of'the test scenario. That is, a certain test scenario may be run
several times. For example, a test scenario may be run by
different users, run on different systems, and/or run by the

25

40

45

50

8

same user on the same system at different times. Each time the
test scenario is run, that may be considered an event of instan-
tiating the test scenario, and each run of the test scenario may
be considered an instantiation of the test scenario.

In some embodiments, runs of test scenarios are identified
from data obtained from monitoring users. Optionally, moni-
toring users may involve detecting, recording, and/or analyz-
ing information entered by the users to computer systems
and/or information presented to the users by the computer
systems. Additionally or alternatively, monitoring may
involve logging programs that were executed by the users,
values utilized by the programs, memory content of programs
and/or network traffic related to activities taken by the users.
Optionally, a run of a test scenario may include data obtained
from monitoring that underwent processing, summarization
and/or analysis. Thus, a run of a test scenario need not nec-
essarily include all data obtained from monitoring the run-
ning of the test scenario, and/or include data obtained from
the monitoring in the same form as it was originally collected
in.

A run of a test scenario may include descriptions of various
aspects of running the test scenario such as: (i) the identity
and/or composition (e.g., field types and/or identifiers) of a
user interface (UI) screens the user manipulated and/or was
exposed to while running the test scenario; (ii) user interac-
tions with a system (e.g., actions performed by the user) (iii)
transactions executed; (iii) behavior of the system during the
test scenario (e.g., content of network transmissions, proce-
dure calls, requests made to components of the system); and/
or (iv) representations of the state of the system at various
stages before, during, and/or after the test scenario is run.
Additionally, a run of a test scenario may include data
extracted from the test scenario and/or template of which the
run is an instantiation. For example, the run may include
values taken from a script according to which the run is
executed and/or default values that appeared in template of
which the run is an instantiation. The run may even include
portions, or the entire scope, of the test scenario and/or the
template of which the run is an instantiation.

A test scenario that is run by a user may be characterized
according to its degree of automation, depending on type of
involvement required of the user. In cases where the user is
required to enter most of the values (e.g., field values on a
screen), the run of the test scenario may be considered to be a
manual run. In other cases, where the system provides some
of'the values (e.g., automatically fills values in no more than
95% of the fields on a screen/transaction/business process),
but the user is still required to provide other values (e.g. enter
values to fields that remain without values in the screen/
transaction/business process), the run of the test scenario may
be considered to be a semiautomatic run. In cases where little
to no user intervention is needed (e.g., the script for running
atestincludes more than 95% of'the values to be entered to the
UT for the test, and is read by the system), the run of the test
scenario may be considered to be an automatic run.

The term “test scenario template” refers to a model accord-
ing to which a test scenario may be structured. A test scenario
template may include one or more test steps, which instruct a
user on an action to perform as part of the test, such as where
to enter a value, what button to push, what screen to select, or
what transaction to run. Optionally, a test scenario template
may include one or more default values used for running an
instantiation of the test scenario template (e.g., default values
for certain fields in a screen). Additionally or alternatively, a
test scenario template may be missing one or more values that
are required for running an instantiation of the test scenario
template; in such a case, a user running the instantiation of a

US 9,317,404 B1

9

template may provide the one or more missing values. In the
interest of brevity, in this disclosure, a term like “test scenario
template” may be replaced with the shorter “template”, where
it is clear from the context.

A run of a test scenario based on a test scenario template
may be considered an instantiation of the test scenario tem-
plate. For example, different users may run test scenarios
based on a certain template; each time one of the users runs a
test scenario based on the certain template, the corresponding
run of that test scenario is considered an instantiation of the
certain template. Similarly, if a user runs multiple test sce-
narios based on a template, where each time a test scenario
was run it was run on a same software system, each of the runs
of the test scenarios is considered a separate instantiation of
the certain template. Optionally, a test scenario template may
be considered associated with an organization if a user
belonging to the organization ran an instantiation of the tem-
plate and/or is intended to run an instantiation of the template.
Additionally or alternatively, a test scenario template may be
considered associated with an organization if the template
was generated based on one or more runs of test scenarios that
are associated with the organization.

As used herein, the term “software system” refers to a
computer system that has software components (e.g., soft-
ware modules that include programs). A software system may
involve hardware (e.g., servers with processors) on which the
software may run. The hardware may be dedicated hardware
for the software system (e.g., servers sitting at an organization
to which the software systems belong). Additionally or alter-
natively, hardware involved in a software system may be
allocated on demand (e.g., cloud-based servers that are uti-
lized by the software system as needed by it).

FIG. 1 illustrates one embodiment of a computer system
configured to generate a test scenario template. The illus-
trated embodiment includes at least a monitoring module 102,
a clustering module 104, a cluster selector 106, and a template
generator 108.

The monitoring module 102 is configured to monitor users
100 belonging to different organizations to identify runs of
test scenarios 103 run on software systems belonging to the
different organizations. Optionally, the monitoring is done at
least in part on the software systems belonging to the different
organizations. For example, the monitoring module 102 may
include components that are installed on the software systems
of the different organizations and collects data generated
while the users 100 are running the test scenarios. Addition-
ally or alternatively, the monitoring module 102 may operate
remotely from the software systems of the different organi-
zations. For example, the monitoring module may be imple-
mented, at least in part, using programs running on a cloud-
based server that receive information related to activity of the
users 100 on the software systems of the different organiza-
tions.

The clustering module 104 is configured to cluster the runs
of'the test scenarios 103 to clusters that include similar runs of
test scenarios. Optionally, the clusters may be of various
sizes, and include runs of various users belonging to different
organizations. Optionally, the clustering module 104 per-
forms processing of the runs prior to clustering, for example,
it extracts field values from screens in runs. Optionally, the
clustering module 104 may receive the runs after they
undergo processing. For example, the runs may be repre-
sented as vectors of features on which a clustering algorithm
utilized by the clustering module 104 may operate. Option-
ally, the clustering module 104 is configured to process and
utilize for the clustering one or more of the following logged
activities: a list of users who ran the test scenarios, an analysis

10

15

20

25

30

35

40

45

50

55

60

65

10

of access to a database, messages returned from executed
transactions, values returned by fields, and procedures uti-
lized by a test scenario.

The cluster selector 106 is configured to select from the
clusters a certain cluster. The selection of the certain cluster
may be done according to various parameters, such the clus-
ter’s size, the number organizations associated with runs
belonging to the cluster, and/or attributes of transactions
executed in the runs belonging to the cluster. In one embodi-
ment, the certain cluster selected by the cluster selector 106
includes a first run of a first test scenario and a second run of
a second test scenario. Optionally, the first run is associated
with a first organization belonging to the different organiza-
tions and the second run is associated with a second organi-
zation belonging to the different organizations. Additionally,
the first run is not identical to the second run, and the first
organization is not the second organization. In this embodi-
ment, the fact that the certain cluster includes runs associated
from different organizations may be indicative of the fact that
the test scenarios test business processes and/or transactions
that are likely also to be used by organizations other than the
first and second organizations.

The template generator 108, is configured to generate a test
scenario template based on one or more runs belonging to the
certain cluster. In one embodiment, the certain cluster con-
tains the first run of a first test scenario and the second run of
a second test scenario, and test scenario template is generated
by the template generator 108 based on the first and second
runs. For example, the template generator 108 includes trans-
actions identified in the first and/or second runs in the tem-
plate. Additionally, the generated template may identify a
transaction used in the first and second runs, and possible
values for running the transaction. Optionally, the identified
transaction is a transaction that was executed in both the first
and second runs, and the possible values for running the
identified transaction are obtained directly from the first and/
or second runs, or derived from the first and/or second runs.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the first and second
runs. Optionally, the test scenario template includes a com-
bination of the possible values, and the combination does not
appear in any of the first and second runs. Optionally, the
template generator 108 is configured to receive the certain
cluster from the clustering selector 106 and to select the first
and second runs from the certain cluster.

In one embodiment, the template generator 108 is also
configured to remove from the test scenario template propri-
etary data captured by the monitoring module. Optionally,
data captured by the monitoring module is considered pro-
prietary if it is captured from less than a predetermined num-
ber of the users. For example, data is proprietary if it appears
in runs of less than 5 users or less than 5% of the users.
Optionally, the template generator 108 utilizes a data cleaner
module to remove the proprietary data.

In one embodiment, the computer system may optionally
include a template filter 112. The template filter 112 is con-
figured to receive a profile 110 of a certain user and to check
whether the test scenario template is relevant to the certain
user based on the profile 110. For example, the template filter
112 may check whether the template involves modules that
the profile 110 indicates that the certain user typically uses. In
another example, the template filter 112 may consult the
profile 110 to check whether the user has permission to runs
certain transactions included in the template.

In one embodiment, the test scenario template includes
values, captured by the monitoring module 102, which were
used by at least one of the users. The template generator 108

US 9,317,404 B1

11

is further configured to remove from the test scenario tem-
plate a value that is expected to be irrelevant to the certain
user. Optionally, the template generator 108 receives the pro-
file 110 and determines relevancy of the values based on the
profile 110. For example, if the template includes values that
are specific to a certain field of operations (e.g., insurance
business), however the profile 110 indicates that the user is in
another field of operations (e.g., auto manufacturing), then
insurance related values may be removed from the template.

In one embodiment, the computer system may optionally
include a user interface 114 configured to suggest a relevant
test scenario template to the certain user. Optionally the rel-
evant template is selected by the template filter 112. Option-
ally, the user interface 114 is coupled to the template filter
112. For example, they both involve software running on a
same server accessed by the certain user. Alternatively, the
template filter 112 may operate remotely from the user inter-
face 114. For example, the template filter 112 may be part of
a cloud-based service running on a remote server, while the
user interface 114 includes hardware (e.g., a terminal) located
at a site where the certain user runs test scenarios.

In one embodiment, the computer system may optionally
include a customization module 116 that is configured to
customize the test scenario template by adding thereto pro-
prietary data relevant to a certain user for whom the test
scenario template is customized. Optionally, the customiza-
tion module performs at least some of the customization
based on the profile 110 and the template is customized for the
certain user. Alternatively, the template may be customized
for a generic user belonging to a specific organization.
Optionally, the customization module 116 may receive a pro-
file of the specific organization and/or a profile of a typical
user belonging to the specific organization, and perform the
customization based on the profile or profiles.

In one embodiment, the template generator 108 is config-
ured to calculate a cohesion rank describing how close to each
other are runs of test scenarios associated with different orga-
nizations. Optionally, the test scenarios involve screens that
include fields, and the cohesion rank is proportional to per-
centage of the fields that are common to the screens that are
included in runs of test scenarios belonging to a cluster.

It is to be noted that there may be considerable flexibility
when it comes implementing computer systems such as the
systems modeled according to FIG. 1. Thus, various embodi-
ments may implement components of the computer system
illustrated in FIG. 1 in various ways. For example, in some
embodiments one or more of the following may be imple-
mented utilizing the same software modules, and/or software
running on the same server and/or processor: the monitoring
module 102, the clustering module 104, the cluster selector
106, the template generator 108, and the template filter 112.
Additionally, one or more of the aforementioned components
may be implemented on a remote server, such as a cloud-
based server. In one example, clustering module 104 and the
cluster selector 106 are both implemented as software run-
ning on the same server. In another example, the clustering
module 104, cluster selector 106, and the template generator
108 are implemented as a cloud-based service that receives
runs of test scenarios from the users 100 belonging to the
different organizations, and generates templates that may be
offered new users. In this example, the template filter 112 may
also be part of the cloud-based service, and may be used to
suggest to users certain templates that are appropriate for
them.

FIG. 2 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template. The
illustrated embodiment includes the following steps:

35

40

45

55

12

In step 120, monitoring users belonging to different orga-
nizations to identify runs of test scenarios run on software
systems belonging to the different organizations.

In step 121, clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios.

In step 122, selecting, from among the clusters, a certain
cluster that includes a first run of a first test scenario, associ-
ated with a first organization belonging to the different orga-
nizations, and a second run of a second test scenario, associ-
ated with a second organization belonging to the different
organizations. In this embodiment, the first run is not identical
to the second run, and the first organization is not the second
organization.

And in step 123, generating a test scenario template repre-
senting the certain cluster, based on the first and second runs.
Optionally, the test scenario template identifies a transaction
used in the first and second runs, and possible values for
running the transaction. For example, the template may pro-
vide an identifier of a transaction and/or code for executing
the transaction. Optionally, at least one of the possible values
for running the transaction does not appear in each of the first
and second runs. Optionally, the test scenario template
includes a combination of the possible values, and the com-
bination does not appear in any of the first and second runs.
Optionally, the test scenario template includes values, cap-
tured during the monitoring, which appear in at least one of
the first and second runs. Optionally, the template is generated
based on the first test scenario and/or the second test scenario.

In one embodiment, the method illustrated in FIG. 2 may
also include additional optional steps: an optional step involv-
ing receiving a profile 124 of a certain user; in optional step
125 testing whether the test scenario template is relevant to
the certain user based on the profile 124; and in optional step
126, if the template is found to be relevant, suggesting to the
certain user to utilize the test scenario template. Optionally,
the test scenario template includes values, captured during the
monitoring, which appear in at least one of the first and
second runs. Generating the template may be followed by,
and/or include, a step of removing from the test scenario
template a value that is expected to be irrelevant to the certain
user. Optionally, determining whether the value is irrelevant
is done based on the profile of the certain user.

A test scenario template may be processed after being
generated in order to remove certain data that appears in it. In
one embodiment, the method illustrated in FIG. 2 may also
include an optional step of removing proprietary data related
to one or more of the users from the generated template.
Optionally, the proprietary data was captured from monitor-
ing the users. Optionally, data captured from monitoring the
users is considered proprietary if it appears in runs of less than
apredetermined number of the users. For example, if a certain
value appears in runs of less than 5% of the users, it may be
considered proprietary.

Clustering runs may rely on various notions of similarity.
In one embodiment, similar runs of test scenarios are charac-
terized by having at least one of: essentially the same fields,
essentially the same field values, similar combinations of
fields, similar combinations of field values, similar execution
of transactions, similar user interactions, similar requests,
similar calls to procedures, and similar executions of proce-
dures.

In another embodiment, the clustering of the runs in step
121 is based on counting the number of similar fields used in
screens corresponding to the runs; the more similar fields, the
more similar the runs of the test scenarios are considered to
be.

US 9,317,404 B1

13

In yet another embodiment, the clustering of the runs in
step 121 is based on similarity between order of displaying
similar fields in screens corresponding to the runs; the closer
the orders, the more similar the runs are considered to be.

In still another embodiment, the clustering of the runs in
step 121 is based on similarity between executed procedures
associated with the test scenarios. Optionally, the clustering is
also based on the order of executing the procedures. Addi-
tionally or alternatively, the clustering may be based on trans-
actions executed as part of runs of test scenarios.

Monitoring the users in step 120 may involve various
activities. In one embodiment, monitoring the users includes
monitoring transactions in the identified runs that were tested
by the users. Additionally or alternatively, monitoring the
users may include monitoring procedures involved in testing
of'the transactions. In one example, the monitoring is screen-
based Ul monitoring (e.g., monitoring content presented to a
user on a screen and/or monitoring data entered by the user
such as selections on the screen). In another example, moni-
toring involves recording a value provided by a user (e.g., a
value entered with a keyboard). In yet another example, the
monitoring includes recording programs that were executed
and the corresponding invocation values. In still another
example, the monitoring includes monitoring network traffic
(e.g., recording messages exchanged between system mod-
ules).

Coverage, such as coverage of transactions or business
processes, which may be achieved by utilizing a template,
may be a consideration, in some embodiments, when it comes
to deciding which templates to generate and/or which tem-
plate to suggest to a user. Additionally, coverage may be
estimated for a group of templates. In one embodiment, the
computer implemented method illustrated in FIG. 2 may
include an optional step of receiving a value representing a
required coverage for a certain user, and achieving the
required coverage with a substantially minimal number of test
scenario templates by estimating coverage of testing achieved
by many templates before the step of suggesting the certain
user to utilize at least one of the templates. Optionally, the
computer implemented method illustrated in FIG. 2 may
include an optional step of calculating the required coverage
based on a usage information ofthe certain user. For example,
usage information of the certain user may be obtained from
the profile 110.

There may be various templates and/or combinations of
templates that can achieve a required coverage for a user;
thus, additional factors may be considered when selecting
templates to achieve the required coverage. In one embodi-
ment, achieving a required coverage for a certain user may be
done by an additional factor: the run time required to runs
instantiations of templates. Optionally, the required coverage
is achieved by selecting templates that require the shortest
time to run for a user that runs test scenarios based on tem-
plates of test scenarios that achieve the required coverage.
Optionally, selection of the templates is done in this case by
estimating time to achieve a required coverage for the certain
user by many templates before the step of suggesting the
certain user to utilize at least one of the templates. For
example, various subsets of templates are considered to deter-
mine if they achieve the required coverage and how long they
take to run. A subset of templates that both achieves the
required coverage and has a minimal running time may then
be selected for the certain user. Optionally, the shortest time is
achieved by suggesting templates relevant to test scenarios
that are expected to be used by the certain user, and spreading
the suggested templates to approximately achieve a uniform
coverage of the test scenarios with the suggested templates.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

In one embodiment, the computer implemented method
illustrated in FIG. 2 may include an optional step of estimat-
ing the importance of a test scenario for a certain user. Fol-
lowing that, the method may include an optional step of
suggesting to the certain user templates corresponding to the
most important test scenarios essentially first. Optionally, the
importance of a certain test scenario is determined by fre-
quency in which the certain test scenario is used relative to
frequency in which other test scenarios are used. For
example, the more frequently a test scenario is used, the more
important its corresponding template may be considered.
Optionally, the importance of a certain test scenario is deter-
mined by characteristics of users of the certain test scenario
compared to characteristics of users of other test scenarios.
For example, if a certain test scenario is used primarily by
testers of management-related modules, it may be considered
more important than a test scenario that is used primarily by
a tester of modules that involve a product-related website.
Optionally, the importance of a certain test scenario is deter-
mined by financial value associated with the certain test sce-
nario compared to financial value associated with other test
scenarios. For example, a test scenario involving completing
a sale may have higher financial value than a test scenario that
involves data mining the internet to find email addresses of
potential customers.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a test scenario template. The computer includes a
processor, and the non-transitory computer-readable medium
stores the following program code:

Program code for monitoring users belonging to different
organizations to identify runs of test scenarios run on soft-
ware systems belonging to the different organizations.

Program code for clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios. Optionally,
the program code for clustering includes instructions or pro-
cessing one or more of the following logged activities: list of
users who ran the test scenarios, analysis of access to a data-
base, messages returned from executed transactions, values
returned by fields, and procedures utilized by a test scenario.

Program code for selecting from the clusters a certain
cluster that includes a first run of a first test scenario and a
second run of a second test scenario. Optionally, the first run
is associated with a first organization belonging to the difter-
ent organizations, the second run is associated with a second
organization belonging to the different organizations, the first
run is not identical to the second run, and the first organization
is not the second organization.

And program code for generating, based on the first and
second runs, a test scenario template representing the certain
cluster. The test scenario template identifies a transaction
used in the first and second runs, and possible values for
running the transaction. Optionally, at least one of the pos-
sible values for running the transaction does not appear in
each of'the first and second runs. Optionally, the test scenario
template includes a combination of the possible values, and
the combination does not appear in any of the first and second
runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for receiving a pro-
file of a certain user, program code for testing whether the test
scenario template is relevant to the certain user based on the
user profile, and program code for suggesting to the certain
user to utilize the test scenario template based on the profile if
the test scenario template is deemed relevant to the certain
user. Optionally, the test scenario template includes values,
captured during the monitoring, which were used by at least

US 9,317,404 B1

15

one of the users. The non-transitory computer-readable
medium may also store program code for removing from the
test scenario template a value that is expected to be irrelevant
to the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for removing from
the test scenario template proprietary data captured from
monitoring the users. Optionally, data captured from moni-
toring the users is considered proprietary if it is captured from
less than a predetermined number of the users.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for calculating a
cohesion rank describing how close to each other are runs of
test scenarios from different organizations. Optionally, the
runs of test scenarios include screens that have fields, and the
cohesion rank describes a percentage of the fields that are
common to the screens that are included in runs of test sce-
narios belonging to a cluster.

FIG. 3 is a schematic illustration of runs of test scenarios
(represented by dots) of three different organizations (128A-
C). The runs are clustered into five different clusters of similar
runs of test scenarios (129A-E). Each cluster is represented
by a test scenario template (illustrated by a start symbol).
Some of the clusters span runs of multiple organizations (e.g.,
129C-E), while other include runs from a single organization
(129A,B). In addition, the templates need not be exact deri-
vations of test scenarios; in this illustration, the fact that the
stars (templates) do not overlap with the dots (runs), illus-
trates that the content of the templates is not derived com-
pletely from any one of the runs. For example, this may be due
to the templates containing combinations of values obtained
from multiple runs.

FIG. 4 illustrates one embodiment of a computer system to
generate a customized test scenario template based on runs of
test scenarios run by users belonging to different organiza-
tions. The illustrated embodiment includes at least a test
identifier 131, a clustering module 132, a cluster selector 133,
a template generator 134, a data cleaner 136, and a customi-
zation module 137.

The test identifier 131 is configured to identify runs of test
scenarios run by the users on software systems that belong to
the different organizations. Optionally, the test identifier 131
receives data obtained from monitoring the users 100.
Optionally, the runs of test scenarios identify transactions that
are run as part of the test scenarios and possible values that
may be used by the transactions. For example, the template
may provide an identifier of the transaction and/or code for
executing the transaction.

The clustering module 132 is configured to cluster the runs
of'the test scenarios to clusters that include similar runs of test
scenarios. Optionally, the clustering module 132 is config-
ured to process one or more of the following logged activities:
a list of users who ran the test scenarios, an analysis of access
to a database, messages returned from executed transactions,
values returned by fields, and procedures utilized by a test
scenario.

The cluster selector 133 is configured to select from among
the clusters a certain cluster that includes a first run of a first
test scenario, associated with a first organization belonging to
the different organizations, and a second run of a second test
scenario, associated with a second organization belonging to
the different organizations. In this embodiment, the first run
may not identical to the second run (e.g., they have different
values to certain fields), and the first organization is not the
second organization. Optionally, the cluster selector 133 is
also configured to receive a profile of the certain user, and to
select a cluster appropriate for the certain user based on the

10

20

30

35

40

45

16

profile and at least one of the following: coverage of the
clusters, importance of the clusters, and ranking of the clus-
ters. For example, the cluster selector 133 may be more likely
to select afirst cluster, which has a high ranking, than a second
cluster that has a lower ranking than the first. Similarly, the
cluster selector 133 may be more likely to select a cluster that
includes runs of test scenario, which based on the profile of
the certain user, may offer higher coverage for the certain
user.

The template generator 134 is configured to generate a test
scenario template based on the first and second runs. Option-
ally, the first and second runs are runs of the same test sce-
nario. Alternatively, the first and second runs may be runs of
different test scenarios (however, the different test scenarios
likely possess some degree of similarity since the first and
second runs were placed in the same cluster by the clustering
module 132). Optionally, the template identifies a transaction
used in the first and second runs, and possible values for
running the transaction. For example, the template may
include identifiers of transactions and/or code that runs the
transactions. Additionally, the template may include values
for running the transaction such as default input values that
the transaction can use. Optionally, at least one of the possible
values for running the transaction does not appear in each of
the first and second runs. Optionally, the test scenario tem-
plate includes a combination of the possible values, and the
combination does not appear in any of the first and second
runs.

The data cleaner 136 is configured to remove from the test
scenario template proprietary data associated with at least one
of'the first organization and the second organization. Option-
ally, most output fields of the first and second runs are
removed, and as a result, the test scenario template does not
include expected values for most test steps. Optionally, the
output fields may be removed by the data cleaner 136 and/or
the template generator 134, the customization module 137,
and/or by another suitable module or combination of mod-
ules.

In one embodiment, a value in a test scenario template may
be considered proprietary and consequently removed from
the template. Optionally, the proprietary value is removed by
the data cleaner 136. Optionally, a decision on whether a
value is proprietary may be based on at least one of: a number
of runs of test scenarios in the certain cluster in which the
value appears, and a number of different organizations asso-
ciated with the runs of the test scenarios in which the value
appears. Optionally, if the number of runs in which the value
appears is below a certain threshold and/or the number of
organizations associated with runs in which the certain value
appears is below a certain threshold then the data cleaner 136
may remove the certain value from the template.

In one embodiment, the data cleaner 136 may enable or
restrict the customization module 137 from utilizing a certain
value based on whether or not the certain value is considered
proprietary. The decision on whether or not the certain value
is proprietary may also be based on at least one of: the number
of runs of test scenarios in which the certain value appears,
and the number of different organizations associated with the
runs of the test scenarios in which the certain value appears.
For example, if the number of runs in which the certain value
appears reaches a predetermined threshold, the certain value
may be considered non-proprietary, and as such is allowed to
be used for customization. In another example, if the number
of organizations associated with the runs in which the
selected value appears reaches a predetermined threshold,
this may indicate that the selected value is non-proprietary; it

US 9,317,404 B1

17

is not likely to be able to identify an organization associated
with a run from which the selected value was taken.

The customization module 137 is configured to customize
the test scenario template by adding to the test scenario tem-
plate proprietary data relevant to a certain user for whom the
test scenario template is customized. Optionally, at least some
of'the data added to the template by the customization module
replaces proprietary data that has been removed from the
template (e.g., by the data cleaner).

In one example, the proprietary data may be entered by the
certain user (e.g., after being prompted to provide it). In
another example, proprietary data is automatically acquired,
e.g., by querying a database for information relevant to the
user such as information obtained from a user profile. In yet
another example, proprietary data used in customization is
obtained from a database the holds information about the
organization to which the certain user belongs.

In one embodiment, the certain user for whom the test
scenario template is customized is a generic user belonging to
a specific organization. Optionally, the specific organization
may be one of the different organizations, or a new organiza-
tion that does not belong to the different organizations.

There may be various relationships between the customi-
zation module 137 and the data cleaner 136. In one embodi-
ment, the customization module 137 and the data cleaner 136
are realized, at least in part, by the same software module. For
example, a certain program may perform both removal of at
least some of the proprietary data from a template, and addi-
tionally, the module may perform at least some of customi-
zation of the template.

In some embodiments, the data cleaner 136 operates on the
template before the customization module 137 receives the
template. While in other embodiments, the order may be
reversed; first the template may customized by the customi-
zationmodule 137, and then proprietary data may be removed
by the data cleaner 136.

In one embodiment, the system illustrated in FIG. 4 option-
ally includes a monitoring module 130 that is configured to
monitor the users 100 belonging to the different organizations
and to provide data obtained from monitoring the users 100 to
the test identifier 131.

In another embodiment, the system illustrated in FIG. 4
optionally includes a user interface 138 configured to suggest
to the certain user to run an instantiation of the customized
test scenario template. Optionally, the user interface 138 may
initiate the instantiation of the customized test scenario tem-
plate. For example, the user interface 138 may present a first
screen of the customized test scenario template and prompt
the user to take a certain action to proceed with execution of
the customized template.

In one embodiment, the data cleaner 136 is configured to:
select a value from the test scenario template, and remove the
selected value from the test scenario template if the selected
value appears in less than a first predetermined number of the
runs of test scenarios in the certain cluster or the selected
value appears in runs of test scenarios in the certain cluster
that are associated with less than a second predetermined
number of different organizations. Optionally, both the first
predetermined number and the second predetermined number
are greater than one.

In another embodiment, the data cleaner 136 is configured
to: select a value from a run of a test scenario; check whether
the value appears in at least a first predetermined number of
the runs of the test scenarios; check whether the value appears
in runs of test scenarios associated with at least a second
predetermined number of different organizations; and if both
conditions are positive, enable the customization module to

10

15

20

25

30

35

40

45

50

55

60

65

18

utilize the selected value for customizing the test scenario
template. Optionally, the data cleaner is further configured
not to enable customization of the test scenario template to
utilize the selected value if at least one of the conditions is
negative.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 4 in
different ways. For example, in some embodiments one or
more of the following may be implemented utilizing the same
software modules, and/or software modules running on the
same server: the monitoring module 130, the test identifier
131, the clustering module 132, the cluster selector 133, the
template generator 134, the data cleaner 136, and the cus-
tomization module 137. Additionally, one or more of the
aforementioned components may be implemented on a
remote server, such as a cloud-based server. In one example,
clustering module 132 and the cluster selector 133 are both
implemented as software running on the same server. In
another example, the clustering module 132, cluster selector
133, and the template generator 134 are implemented as a
cloud-based service that receives runs of test scenarios from
the users 100 belonging to the different organizations, and
generates templates that may be offered new users. In this
example, the data cleaner 136 and/or the customization mod-
ule 137 may also be part of the cloud-based service, and may
be used to prepare a template to be utilized by users.

FIG. 5 illustrates one embodiment of a computer imple-
mented method for generating a customized test scenario
template based on runs of test scenarios run by users belong-
ing to different organizations. The illustrated embodiment of
the method includes the following steps:

In step 140, identifying runs of test scenarios run by the
users on software systems that belong to the different orga-
nizations.

In step 141, clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios. In one
example, the runs of test scenarios in the certain cluster
include five non-identical runs of test scenarios, each associ-
ated a different organization. Optionally, similar runs of test
scenarios are characterized by having at least one of: essen-
tially the same fields, essentially the same field values, similar
combinations of fields, similar combinations of field values,
similar execution of transactions, similar user interactions,
similar requests, similar calls to procedures, similar execu-
tions.

In step 142, selecting, from among the clusters, a certain
cluster that includes a first run of a first test scenario, associ-
ated with a first organization belonging to the different orga-
nizations, and a second run of a second test scenario, associ-
ated with a second organization belonging to the different
organizations. Optionally, the first run is not identical to the
second run, and the first organization is not the second orga-
nization. Optionally, the first test scenario is identical to the
second test scenario. Alternatively, the first test scenario may
be different from the second test scenario.

In step 143, generating a test scenario template associated
with the certain cluster based on the first and second runs.
Optionally, the template is also generated, at least in part,
based on the first test scenario and/or the second test scenario.
Optionally, the test scenario template identifies a transaction
used in the first and second runs, and possible values for
running the transaction. Optionally, at least one of the pos-
sible values for running the transaction does not appear in
each of'the first and second runs. Optionally, the test scenario
template includes a combination of the possible values, and
the combination does not appear in any of the first and second
runs.

US 9,317,404 B1

19

In step 144, removing from the test scenario template pro-
prietary data associated with at least one of the first organi-
zation and the second organization. Optionally, most of the
output fields of the first and second runs are removed. As a
result, the test scenario template does not include expected
values for most test steps.

And in step 145, customizing the test scenario template by
adding to the test scenario template proprietary data relevant
to a certain user for whom the test scenario template is cus-
tomized. Optionally, the certain user for whom the test sce-
nario template is customized is a generic user belonging to a
specific organization.

In one embodiment, the computer implemented method
includes step 139, which involves monitoring the users and
providing data obtained from the monitoring for use in the
identifying of the runs of test scenarios.

In one embodiment, step 144 may be performed after step
145; that is first customizing of the template is performed, and
then proprietary data is removed; while in other embodi-
ments, the order may be first to remove proprietary data (step
144) and then to customize (step 145).

In one embodiment, prior to selecting the certain cluster in
step 142, a profile of a certain user is received, and selecting
the certain cluster is done, at least in part, based on the profile
so the certain cluster is appropriate for the certain user.
Optionally, at least one of the following factors is considered
in along with information in the profile: coverage of the
clusters, importance of the clusters, and ranking of the clus-
ters. Optionally, at least one of the factors is computed for at
least some of the clusters with respect to the profile. For
example, the coverage of the clusters is computed with
respect to an indication in the profile regarding the modules
and/or business processes utilized by the user. Similarly,
importance of the clusters may be computed with respect to
the number of modules, tested by runs in a cluster, which are
utilized often by the user.

In one embodiment, step 144 which involves removing
from the test scenario template proprietary data, involves
selecting a value derived from the test scenario template.
Optionally, the certain value is derived from at least one of the
first and second runs. Following that, removing the selected
value from the test scenario template if the selected value
appears in less than a first predetermined number of the runs
of test scenarios in the certain cluster or the selected value
appears in runs of test scenarios in the certain cluster that are
associated with less than a second predetermined number of
different organizations. In this embodiment, both the first
predetermined number and the second predetermined number
are greater than one.

In one embodiment, step 144 which involves removing
from the test scenario template proprietary data includes:
selecting a value appearing in at least one of the first run and
the second run; testing whether the value appears in at least a
first predetermined number of the runs in the certain cluster;
testing whether the value appears in runs in the certain cluster
that are associated with at least a second predetermined num-
ber of different organizations; and if both conditions are posi-
tive, enabling customization of the test scenario template to
utilize the selected value. Optionally, if at least one of the
aforementioned conditions is negative, customization of the
test scenario template is not allowed to utilize the selected
value.

In one embodiment, the computer implemented method
illustrated in FIG. 5 includes an optional step of suggesting to
the certain user to run an instantiation of the generated cus-
tomized test scenario template. Optionally, the suggestion to
run the instantiation is done via the user interface 138.

10

15

20

25

30

35

40

45

50

55

60

65

20

Inone embodiment, clustering the runs in step 141 involves
processing one or more of the following logged activities: a
list of users who ran the test scenarios, an analysis of access to
a database, messages returned from executed transactions,
values returned by fields, and procedures utilized by a test
scenario. Optionally, clustering of the runs in step 141 is
based on counting the number of similar fields used in screens
corresponding to the runs; the more similar fields, the more
similar the runs of the test scenarios are considered to be.
Additionally or alternatively, clustering of the runs in step 141
may be based on similarity between order of displaying simi-
lar fields in screens corresponding to the runs; the closer the
orders, the more similar the runs are considered to be. Addi-
tionally or alternatively, clustering of the runs in step 141 may
be based on similarity between executed procedures associ-
ated with the test scenarios. Optionally, the clustering may
also be based on the order of executing the procedures and/or
on transactions executed as part of runs of test scenarios.

FIG. 6 illustrates one embodiment in which a user 148
performs a semiautomatic run of a test scenario that is an
instantiation of a test scenario template 146. The template 146
is provided to the semiautomatic test scenario executer 147
which is a system capable of communicating with the user
148. When faced with a value missing from the template 146,
but needed for running the test scenario, the semiautomatic
test scenario executer prompts the user 148 to provide a value.
After providing the value, the semiautomatic executer con-
tinues with the run. Optionally, the semiautomatic executer
147 may require the user to enter multiple values, possibly at
multiple times. After completing the run, the semiautomatic
test scenario executer generates test results 149. Optionally,
values provided by the user 148 to the semiautomatic executer
147 may be utilized in order to customize the template 146.
Thus, additional runs of the template 146 and/or runs of other
related templates, which can utilize the provided values, may
not require user intervention and may run automatically.

FIG. 7 illustrates one embodiment in which a test scenario
template 169 is customized by a user 171, using a customi-
zation module 172. Certain values for the customization of
the template 169 are provided by the user 171, while other
values are obtained by analyzing the runs 170 of test scenarios
of the users 100 which ran the test scenarios on software
systems belonging to different organizations. In one example,
the customization module 172 attempts to extract needed
values from the runs 170. If the customization module 172 is
unable to extract certain needed values, the user 171 is
prompted to enter the certain needed values. After, receiving
values (e.g., default values and/or proprietary data) to add to
the template 169, the customization module 172 generates a
customized template 173.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a customized test scenario template based on runs
of test scenarios run by users belonging to different organi-
zations. The computer includes a processor, and the non-
transitory computer-readable medium stores the following
program code:

Program code for monitoring the users belonging to the
different organizations to identify runs of test scenarios run
on similar software systems belonging to the different orga-
nizations.

Program code for clustering the runs to clusters that
include similar runs of test scenarios.

Program code for selecting from the clusters a certain
cluster that includes: a first run of a first test scenario associ-
ated with a first organization belonging to the different orga-
nizations, and a second run of a second test scenario associ-

US 9,317,404 B1

21

ated with a second organization belonging to the different
organizations; the first run is not identical to the second run,
and the first organization is not the second organization.

Program code for generating a test scenario template rep-
resenting the certain cluster, based on the first and second
runs. Optionally, the test scenario template identifies a trans-
action used in the first and second runs, and possible values
for running the transaction. Optionally, at least one of the
possible values for running the transaction does not appear in
each of the first and second runs. Optionally, the test scenario
template includes a combination of the possible values, and
the combination does not appear in any of the first and second
runs.

Program code for removing from the test scenario template
proprietary data associated with at least one of the first orga-
nization and the second organization. Optionally, the pro-
gram code involves removing most of the output fields of the
first and second runs, and as a result, the test scenario template
does not include expected values for most test steps.

And program code for generating a customized test sce-
nario template by adding thereto proprietary data relevant to
a certain user for whom the test scenario template is custom-
ized.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for receiving a pro-
file of the certain user, and selecting a cluster appropriate for
the certain user based on the profile and at least one of the
following: coverage of the clusters, importance of the clus-
ters, and ranking of the clusters.

In one embodiment, the program code for removing from
the test scenario template proprietary data associated with at
least one of the first organization and the second organization
includes: program code for selecting a value derived from the
test scenario template, wherein said value is derived from at
least one of the first and second runs. And in addition, pro-
gram code for removing the selected value from the test
scenario template if the selected value appears in less than a
first predetermined number of the runs of test scenarios in the
certain cluster or the selected value appears in runs of test
scenarios in the certain cluster associated with less than a
second predetermined number of different organizations.
Optionally, both the first predetermined number and the sec-
ond predetermined number are greater than one.

In one embodiment, the program code for removing from
the test scenario template proprietary data associated with at
least one of the first organization and the second organization
includes program code for: selecting a value that appears in at
least one of the first run and the second run; testing whether
the value appears in at least a first predetermined number of
the runs in the certain cluster; testing whether the value
appears in runs in the certain cluster that are associated with
at least a second predetermined number of different organi-
zations; and if both conditions are positive, enabling custom-
izing of the test scenario template to utilize the selected value.
Optionally, the non-transitory computer-readable medium
may also store program code for not enabling customization
of' the test scenario template to utilize the selected value if at
least one of the conditions is negative.

In one embodiment, the non-transitory computer-readable
medium may also store program code for suggesting to the
certain user to run an instantiation of the generated custom-
ized test scenario template.

FIG. 8 illustrates one embodiment of a computer system
configured to generate a test scenario template based on auser
profile. The illustrated embodiment includes at least a test
identifier 131, a clustering module 132, a cluster selector 150,
a data cleaner 154, and a template generator 156.

10

15

20

25

30

35

40

45

50

55

60

65

22

The test identifier 131 is configured to identify runs of test
scenarios run by users on software systems that belong to
different organizations. Optionally, the users belong to dif-
ferent organizations.

The clustering module 132 is configured to cluster the runs
of'the test scenarios to clusters that include similar runs of test
scenarios. Optionally, the clustering module 132 is config-
ured to process one or more of the following logged activities:
a list of users who ran the test scenarios, an analysis of access
to a database, messages returned from executed transactions,
values returned by fields, and procedures utilized by a test
scenario. Optionally, the clusters may be of various sizes, and
include runs of various users belonging to different organiza-
tions. Optionally, the clustering module 132 performs pro-
cessing of the runs prior to clustering; for example, it extracts
field values from screens in runs. Optionally, the clustering
module 132 may receive the runs after they undergo process-
ing. For example, the runs may be represented as vectors of
features on which a clustering algorithm utilized by the clus-
tering module 132 may operate.

The cluster selector 150 is configured to receive a profile
152 of a first user, and to select, from among the clusters, a
certain cluster that suits the profile. In this embodiment, the
certain cluster may include a first run of a first test scenario,
associated with a first organization belonging to the different
organizations, and a second run of a second test scenario,
associated with a second organization belonging to the dif-
ferent organizations. Additionally, the first run is not identical
to the second run, and the first organization is not the second
organization.

In one embodiment, in addition to considering the profile
152, selection of a cluster may be done, at least in part,
according to various parameters, such the cluster’s size, the
number organizations associated with runs belonging to the
cluster, and/or attributes of transactions executed in the runs
belonging to the cluster. Optionally, the more runs belong to
a cluster and/or the larger the number of organizations asso-
ciated with runs that belong to the cluster, the likelier the
cluster selector 150 is to select the cluster to be the certain
cluster.

The data cleaner 154 is configured to remove from the first
run proprietary data associated with the first organization.
Optionally, the data cleaner 154 is also configured to remove
from the second run proprietary data associated with the
second organization. Optionally, the data cleaner 154 is also
configured to remove a selected value from the first run based
on at least one of: number of runs of test scenarios in which
the value appears, and number of different organizations
associated with the runs of the test scenarios in which the
value appears. Optionally, most output fields of the first and
second runs are removed by the data cleaner 154, and as a
result, the test scenario template does not include expected
values for most test steps.

The template generator 156 is configured to generate a test
scenario template based on the first and second runs. Option-
ally, the test scenario template identifies a transaction used in
the first and second runs, and possible values for running the
transaction. Optionally, at least one of the possible values for
running the transaction does not appear in each of the first and
second runs. Optionally, the test scenario template includes a
combination of the possible values, and the combination does
not appear in any of the first and second runs.

In one embodiment, the data cleaner 154 may be config-
ured to remove proprietary data from the template. Option-
ally, the data cleaner 154 removes from the template propri-
etary data associated with the first and/or second
organizations. Optionally, the data cleaner 154 may be imple-

US 9,317,404 B1

23

mented as part of the template generator 156. For example,
removal of proprietary data may be part of the process of
generating the template.

In one embodiment, the computer system optionally
includes a customization module 158. The customization
module 158 is configured to customize the test scenario tem-
plate for the first user by adding to the test scenario template
proprietary data relevant to the first user. Optionally, customi-
zation module 158 is also configured to obtain the proprietary
data relevant to the first user from a previously monitored run
of test scenario associated with the first user, and substitute a
non-empty subset of the removed proprietary data with the
obtained data. Additionally or alternatively, the customiza-
tion module may be configured to extract proprietary data
relevant to the customization of the template from the profile
152. Additionally or alternatively, the customization module
158 may be configured to obtain the proprietary data relevant
to the first user from parsing a manual test scenario associated
with the first user for obtaining a value associated with the
first user, and substituting a non-empty subset of the removed
proprietary data with the obtained value. Additionally or
alternatively, the customization module 158 may be config-
ured to obtain the proprietary data relevant to the first user
from analyzing a database of the software system associated
with the first user to obtain a value associated with the first
user, and substituting a non-empty subset of the removed
proprietary data with the obtained value.

In one embodiment, the customization module 158 is also
configured to: provide the test scenario template to a second
user, prompt the second user to provide a missing value, and
record an input value provided by the second user. Optionally,
the first user and the second user are the same user.

In one embodiment, the computer system optionally
includes a user interface 157 configured to suggest to the first
user to run an instantiation of the test scenario template.
Optionally, the template suggested to the first user is custom-
ized by the customization module 158. For example, the
template suggested to the user includes proprietary data rel-
evant to the first user (e.g., one or more values taken from the
profile 152).

In another embodiment, the computer system optionally
includes a monitoring module 130. The monitoring module is
configured to monitor the users 100 belonging to the different
organizations and to provide data obtained from monitoring
the users to the test identifier 131.

In one embodiment, the profile 152 of the first user includes
transactions (e.g., code of the transactions or identifiers of the
transactions) executed by the first user and the cluster selector
150 is also configured to select, from among the clusters, a
certain cluster which contains runs of test scenarios that
involve similar transactions to the transactions executed by
the first user. Additionally or alternatively, the profile 152 of
the first user may include values used by the first user during
execution of transactions, and the cluster selector is config-
ured to select, from among the clusters, a certain cluster
which contains runs of test scenarios that involve similar
values to the values used by the first user.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 8 in
different ways. For example, in some embodiments one or
more of the following may be implemented utilizing the same
software modules, and/or software modules running on the
same server: the monitoring module 130, the test identifier
131, the clustering module 132, the cluster selector 150, the
template generator 156, the data cleaner 154, and the cus-
tomization module 158. Additionally, one or more of the
aforementioned components may be implemented on a

30

40

45

55

24

remote server, such as a cloud-based server. In one example,
clustering module 132 and the cluster selector 150 are both
implemented as software running on the same server. In
another example, the clustering module 132, cluster selector
150, the data cleaner 154, and the template generator 156 are
implemented as a cloud-based service that receives runs of
test scenarios from the users 100 belonging to the different
organizations, and generates templates that may be offered
new users. In this example, the customization module 158
may also be part of the cloud-based service, and may be used
to prepare a template to be utilized by users. Optionally, the
customization module 158 and the data cleaner 154 may be
both implemented as modules of the template generator.

FIG. 9 illustrates one embodiment of a computer imple-
mented method for generating a customized test scenario
template based on a user profile. The illustrated embodiment
includes the following steps:

In step 160, identifying runs of test scenarios run by users
belonging to different organizations on software systems that
belong to the different organizations.

In step 161, clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios.

Instep 162, receiving a profile of a first user. Optionally, the
profile of the first user includes transactions (e.g., code of the
transactions or identifiers of the transactions) executed by the
first user and the selecting from the clusters of the certain
cluster is done by examining transactions involved in runs in
the clusters to identify a cluster containing test scenarios that
involve similar transactions to the transactions executed by
the first user. Optionally, the profile of the first user includes
values used by the first user during execution of transactions,
and the selecting of the certain cluster is done by examining
values involved in runs in the clusters to identify a cluster
containing test scenarios that involve similar values to the
values used by the first user.

In step 163, selecting, from among the clusters, a certain
cluster that suits the profile. In this embodiment, the certain
cluster includes a first run of a first test scenario, associated
with a first organization belonging to the different organiza-
tions, and a second run of a second test scenario, associated
with a second organization belonging to the different organi-
zations; the first run is not identical to the second run, and the
first organization is not the second organization.

In step 164, removing from the first run proprietary data
associated with the first organization. Optionally, step 164
may also involve removing from the second run proprietary
data associated with the second organization. Optionally,
most output fields of the first and second runs are removed,
and as a result, the test scenario template does not include
expected values for most test steps.

And in step 165, generating a test scenario template based
on the first and second runs. Optionally, generation of the test
scenario template is also based on the first test scenario and/or
the second test scenario. Optionally, the test scenario tem-
plate identifies a transaction used in the first and second runs,
and possible values for running the transaction. Optionally, at
least one of the possible values for running the transaction
does not appear in each of the first and second runs. Option-
ally, the test scenario template includes a combination of the
possible values, and the combination does not appear in any
of the first and second runs.

In one embodiment, removing from the first run propri-
etary data associated with the first organization in step 165
includes: selecting a value from the first run, and removing
the selected value if the selected value appears in less than a
first predetermined number of runs of test scenarios or the
selected value appears in runs of test scenarios associated

US 9,317,404 B1

25

with less than a second predetermined number of different
organizations. Both the first predetermined number and the
second predetermined number may be greater than one.

In one embodiment, the computer implemented method
includes an additional optional step 159, which involves
monitoring the users belonging to different organizations and
providing data collected in the monitoring for the identifying
of the runs of test scenarios.

In one embodiment, the computer implemented method
includes an additional optional step 166, which involves cus-
tomizing the test scenario template for the first user by adding
to the test scenario template proprietary data relevant to the
first user. Optionally, customizing the test scenario template
involves obtaining a value from a run of a previously moni-
tored test scenario associated with the first user, and substi-
tuting a non-empty subset of the removed proprietary data
with the obtained value. Optionally, customizing the test sce-
nario template may involve parsing a manual test scenario
associated with the first user in order to obtain a value asso-
ciated with the first user, and substituting a non-empty subset
of the removed proprietary data with the obtained value.
Optionally, customizing the test scenario template may
involve analyzing a database of the software system associ-
ated with the first user to obtain a value associated with the
first user, and substituting a non-empty subset of the removed
proprietary data with the obtained value. Optionally, custom-
izing the test scenario template may involve extracting pro-
prietary data useful for customization of the template from a
profile of the first user.

In one embodiment, customizing the test scenario template
in step 166 involves: providing the test scenario template to a
second user, prompting the second user to provide a missing
value, and recording an input value provided by the first user.
Optionally, the first user and the second user may be the same
user.

In one embodiment, the computer implemented method
may include an additional optional step 167 involving sug-
gesting to the first user to run an instantiation of the custom-
ized test scenario template. For example, the user interface
157 may be utilized to present the template to the first user.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a customized test scenario template based on a
user profile. The computer includes a processor, and the non-
transitory computer-readable medium stores the following
program code:

Program code for monitoring users belonging to different
organizations to identify runs of test scenarios run on soft-
ware systems belonging to the different organizations.

Program code for clustering the runs of test scenarios to
clusters that include similar runs of test scenarios;

Program code for receiving a profile of a first user.

Program code for selecting, from among the clusters, a
certain cluster that suits the profile. In this embodiment, the
certain cluster includes a first run of a first test scenario,
associated with a first organization belonging to the different
organizations, and a second run of a second test scenario,
associated with a second organization belonging to the dif-
ferent organizations; the first run is not identical to the second
run, and the first organization is not the second organization.

Program code for removing from the first run proprietary
data associated with the first organization. Additionally or
alternatively, the program code may involve removing from
the second run proprietary data associated with the second
organization. Optionally, the program code for removing pro-
prietary data involves removing most of the output fields of

30

40

45

26

the first and second runs; and as a result, the test scenario
template does not include expected values for most test steps.

And program code for generating a test scenario template
based on the first and second runs. Optionally, the test sce-
nario template identifies a transaction used in the first and
second runs, and possible values for running the transaction.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the first and second
runs. Optionally, the test scenario template includes a com-
bination of the possible values, and the combination does not
appear in any of the first and second runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
users belonging to different organizations and providing data
collected in the monitoring for the identifying of the runs of
test scenarios.

In one embodiment, the profile of the first user includes
descriptions of transactions executed by the first user. Option-
ally, the program code for the selecting of the certain cluster
includes computer code for examining transactions involved
in runs in the clusters in order to identify a cluster containing
test scenarios that involve similar transactions to the transac-
tions executed by the first user.

In another embodiment, the profile of the first user includes
values used by the first user during execution of transactions,
and the computer code for the selecting of the certain cluster
includes computer code for examining values involved in
runs in the clusters in order to identify a cluster containing test
scenarios that involve similar values to the values used by the
first user.

In one embodiment, the program code for removing from
the first run proprietary data associated with the first organi-
zation includes: program code for selecting a value from the
first run, and program code for removing the selected value if
the selected value appears in less than a first predetermined
number of runs of test scenarios or the selected value appears
in runs of test scenarios associated with less than a second
predetermined number of different organizations; both the
first predetermined number and the second predetermined
number are greater than one.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for customizing the
test scenario template for the first user by adding to the test
scenario template proprietary data relevant to the first user.
Optionally, the program code for customizing the test sce-
nario template for the first user includes: program code for
obtaining the proprietary data relevant to the first user from a
previously monitored run of test scenario associated with the
first user, and program code for substituting a non-empty
subset of the removed proprietary data with the obtained
value. Optionally, the program code for customizing the test
scenario template for the first user includes: program code for
obtaining the proprietary data relevant to the first user from
parsing a manual test scenario associated with the first user,
for obtaining a value associated with the first user, and pro-
gram code for substituting a non-empty subset of the removed
proprietary data with the obtained value. Optionally, the pro-
gram code for customizing the test scenario template for the
firstuser includes: program code for obtaining the proprietary
data relevant to the first user from analyzing a database of the
software system associated with the first user to obtain a value
associated with the first user, and program code for substitut-
ing a non-empty subset of the removed proprietary data with
the obtained value. Optionally, the program code for custom-
izing the test scenario template for the first user includes

US 9,317,404 B1

27

program code for extracting proprietary data that may be
useful for customization of the template from a profile of the
first user.

FIG. 10 and FIG. 11 illustrate embodiments of a computer
system configured to generate a test scenario template from
runs of test scenarios that include a subset of test steps. The
computer system includes at least the test identifier 604, a
subset identifier 606, a subset selector 608, a run selector 612,
and a template generator 614.

The test identifier 604 is configured to identify runs of test
scenarios run by users on software systems that belong to
different organizations. Optionally, the users belong to the
different organizations. Optionally, the test identifier 604
receives activity data 603 obtained from monitoring the users.
In one example, the identified runs include at least a first run
that was run by a first user belonging to a first organization
and a second run that was run by a second user belonging to
a second organization, and the first organization is not the
second organization and the first user is not the second user.

In one embodiment, a test scenario may be characterized as
including test steps; running the test scenario involves execut-
ing the test steps, and a run of the test scenario may describe
the test steps. For example, each run of a test scenario may
include a description of the test steps that were executed as
part of running the test scenario (e.g., code executed in the test
steps, values utilized by the test steps, and/or identifiers of the
test steps). Optionally, since different test scenarios may
include different test steps, runs of the different test scenarios
may describe different subsets of test steps that were executed
when running the different test scenarios. Additionally, in
some cases, runs of the same test scenario may follow differ-
ent control paths (e.g., due to different system behavior).
Thus, in such cases, different runs of the same test scenario
may describe different subsets of test steps.

The subset identifier 606 is configured to identify subsets
of'test steps that are frequently described in the runs of the test
scenarios. Optionally, subsets may be frequently described in
the runs because the test steps are frequently executed in the
runs. Optionally, based on analysis of the runs, the subset
identifier 606 is able to determine, for at least some of'the runs
of the test scenarios, at least some of the test steps that are
executed while running the test scenarios. Optionally, a test
step may identified by various means, such as via a name of
the test step, an identifier (e.g., an identification number and/
or hash value that represents the test step), code executed by
the test step, and/or a description of a value associated with
the test step (e.g., a value provided as input for the test step).
Optionally, each run of the at least some runs, is associated
with at least one subset of test steps that are described in the
run and/or that were executed in the run. Optionally, a run
may be associated with a number of subsets of test steps that
may or may not overlap to some extent. For example, some
subsets from a run may have certain test steps in common,
while other subsets from the run may not have any test steps
in common. Optionally, each subset includes a fixed number
of test steps (e.g., three test steps). Alternatively, subsets of
test steps may be of various sizes.

In one embodiment, the subset identifier 606 assigns iden-
tifiers to subsets of test steps. For example, the subsets may be
stored in a database, and each run of a test scenario may be
associated with one or more entries in the database that cor-
respond to one or more subsets of test steps. Optionally, a
subset of test steps may be identified by a hash value (e.g., a
hash function value that is given to an input that includes a
description of the test steps). Optionally, the identifiers of the
subsets may be utilized to identify subsets that are frequently
described in runs. For example, a database that stores subsets

40

45

50

55

28

of test steps may have fields that store a value representing
how many times the subsets of test steps were described in
runs. When a new run is processed, values corresponding to
subsets found in the run are incremented; thus after process-
ing multiple runs, it may be possible to determine which
subsets are frequently described by evaluating the values in
the fields. In another example, entries in a hash table that
accept as keys subsets of test steps, and/or identifiers of sub-
sets of test steps, may have values that correspond to the
number of times the subsets were described in runs and/or the
number of organizations associated with runs in which the
subsets of test steps were described. Thus, scanning the val-
ues in the hash table may help identify frequently described
subsets.

Based on the test step associated with the at least some
runs, the subset identifier 606 may determine which of the
subsets of test steps are frequently described in the runs of the
test scenarios. In one example, a subset of test steps is con-
sidered to be frequently described if its test steps are
described in at least a predetermined number of the runs. In
another example, a subset of test steps is considered to be
frequently described if'its test steps are described in at least a
predetermined proportion of the runs. In yet another example,
a certain number and/or a certain proportion of the subsets of
test scenarios that are described the most times are considered
frequently described. In this example, the subsets of test steps
may be ranked according to the number of times they were
described in runs of test scenarios, and the top ranked subsets
are considered frequently described. For example, the top 5%
of the subsets of test steps may be considered frequently
described subsets of test steps.

In one embodiment, a subset of test steps is considered
frequently described if the test steps included in the subset are
described in runs of test scenarios associated with at least a
predetermined number of different organizations. For
example, the subset of test steps may need to be described in
test scenarios run by users from at least five different organi-
zations in order to be considered frequently described.

It is to be noted that a “predetermined number” refers to a
fixed number known a priori, or to a number derived accord-
ing to logic that is known a priori. For example, a threshold for
anumber of runs may be 10% ofthe runs (in this case the logic
for computing the predetermined number is known a priori,
but the actual number is determined at runtime when the
number of runs is known).

The subset selector 608 is configured to receive a profile
610 of a first user and, based on the profile 610, to select a
certain subset, from among the frequently described subsets
of'test steps, which is appropriate for the first user. Optionally,
the profile 610 indicates test steps that are likely to be relevant
to the first user. For example, the profile may include previous
runs of test scenarios of the first user and/or list specific
transactions executed by the first user and/or an organization
to which the first user belong. Optionally, the certain subset
contains at least one test step that involves execution of a
transaction that is not mentioned in the profile 610. Option-
ally, the certain subset contains at least one test step that
involves a value that is not mentioned in the profile 610.

In one embodiment, the profile 610 describes transactions
executed by the first user. The subset selector 608 is config-
ured to select from the subsets of frequently described test
steps a certain subset which contains at least one test step that
involves a transaction similar to a transaction executed by the
first user. Optionally, a subset of test steps that includes at
least one test step executed by the first user is considered
appropriate for the first user. For example, if based on the
profile 610, the first user is known to frequently execute a test

US 9,317,404 B1

29

step involving creating a new client record, then subsets of
test steps involving the test step of creating a new client record
may be considered appropriate for the first user.

In one embodiment, similar transactions refer to transac-
tions that behave similarly and/or have essentially the same
functionality. For example, a “create” transaction for a mate-
rial number and a “change” transaction for the material num-
ber are similar because they process essentially the same date,
e.g., the create transaction introduces the material number
and its related properties, and the change transaction manipu-
lates the properties of the material number. In another
embodiment, two transactions are similar when one includes
a certain option while the other does not include the certain
option. In still another embodiment, there are transactions in
which most of the steps are the same, and the difference is in
the user interface. For example, SAP transaction ST03 and
SAP transaction STO3N have a different interface but essen-
tially the same functionality.

In another embodiment, the profile 610 describes values
used by the first user during execution of transactions. The
subset selector 608 is configured to select from the subsets of
frequently described test steps a certain subset that contains at
least one test step that involves a value similar to a value used
by the first user to execute a transaction. Optionally, a subset
of'test steps that includes at least one test step that involves a
value similar to a value used by the first user is considered
appropriate for the first user. For example, if the profile 610
indicates that the first user executes test steps in which the
accounting department is frequently the destination for mes-
sages, then a subset of test steps that includes a test step which
uses the accounting department as a destination for messages
may be considered appropriate for the user. It is to be under-
stood that the user in this embodiment may be a tester and/or
a production user who executes test steps as part of his/her
usual working procedure.

In yet another embodiment, a subset of test steps may be
considered appropriate for the first user, if based on the profile
610, it may be determined that the first user executed at least
a predetermined number and/or a predetermined proportion,
of the test steps in the subset. For example, a subset of test
steps may be considered appropriate for the first user if the
profile 610 indicates that at least 50% of the test steps in the
subset were executed by the first user. Optionally, the at least
50% of the steps are described in various runs of test sce-
narios. For example, each of the test steps is described in a
different run). Optionally, the at least 50% of the steps are
described in a single run; that is, there is a certain run corre-
sponding to an instantiation of a test scenario in which the first
user executed the at least 50% of the test steps.

In still another embodiment, a subset of test steps may be
considered appropriate for the first user, if based on the profile
610, it may be determined that the first user executed test steps
that involve at least a predetermined number and/or a prede-
termined proportion, of the values utilized in test steps
belonging to the subset. For example, a subset of test steps
may be considered appropriate for the first user if the profile
610 indicates that at least 80% of the values in test steps in the
subset were utilized by the first user. Optionally, the at least
80% of the values are described in various runs of test sce-
narios. For example, each of the values may be described in a
different run). Optionally, the at least 80% of the values are
described in a single run; that is, there is a certain run corre-
sponding to an instantiation of a test scenario in which the first
user utilized the at least 80% of the values while running the
test scenario.

The run selector 612 is configured to receive the certain
subset of test steps, and to select from among the runs of the

20

30

35

40

45

50

55

65

30

test scenarios, a first run of a first test scenario that is associ-
ated with a first organization belonging to the different orga-
nizations, and a second run of a second test scenario that is
associated with a second organization belonging to the dif-
ferent organizations. The first runincludes a first subset of test
steps that is essentially identical to the certain subset, and the
second run includes a second subset of test steps that is
essentially identical to the certain subset. Optionally, the first
organization and the second organization are different orga-
nizations. Optionally, the first user is not associated with any
of' the first organization and the second organization.

In one embodiment, subset of test steps A is essentially
identical to subset of test steps B, if the test steps in A are the
same as the test steps in B, but possibly involve different
values. For example, A and B involve execution of the same
transactions however some of the default values in A might be
different from the default values in B.

In another embodiment, subset of test steps A is essentially
identical to subset of test steps B, if the test steps in A involve
execution of similar transactions to transactions involved in
executions of the test steps in B. For example, the transactions
executed by test steps from A may be the same type as the
transactions executed by test from B (e.g., they perform a
similar action or involve similar system components). In
another example, most of the transactions executed in test
steps into A are also executed in test steps in B, and vice versa.

The template generator 614 is configured to generate a test
scenario template 615 based on the first and second runs.
Optionally, the test scenario template 615 identifies a trans-
action used in the first and second runs, and possible values
for running the transaction. Optionally, the identified trans-
action is a transaction that was executed in both the first and
second runs, and the possible values for running the identified
transaction are obtained directly from the first and/or second
runs, or derived from the first and/or second runs.

In one embodiment, the computer system optionally
includes a customization module 616. The customization
module 616 is configured to customize the test scenario tem-
plate 615 for the first user by adding to the test scenario
template 615 proprietary data relevant to the first user.
Optionally, at least some of the proprietary data if obtained
from the profile 610. Additionally, the computer system may
include an optional user interface 618 configured to suggest to
the first user to run an instantiation of the customized test
scenario template.

In one embodiment, the customization module 616 is con-
figured to obtain the proprietary data relevant to the first user
from a previously monitored run of test scenario associated
with the first user, and substitute a non-empty subset of the
removed proprietary data with the obtained value. Optionally,
a run may be considered associated with the first user if the
run was run by the first user and/or the run is associated with
an organization to which the first user belongs. Additionally
or alternatively, the customization module 616 may be also
configured to obtain the proprietary data relevant to the first
user from parsing a manual test scenario associated with the
first user for obtaining a value associated with the first user,
and substituting a non-empty subset of the removed propri-
etary data with the obtained value. Optionally, a manual test
scenario may be considered associated with the first user if the
first user ran an instantiation of the test scenario and/or is
supposed to run an instantiation of the test scenario (e.g.,
according to a testing plan). Additionally or alternatively, the
customization module 616 may be also configured to obtain
the proprietary data relevant to the first user from analyzing a
database of the software system associated with the user to

US 9,317,404 B1

31

obtain a value associated with the first user, and substituting a
non-empty subset of the removed proprietary data with the
obtained value.

In another embodiment, the customization module 616 is
also configured to: provide the test scenario template 615to a
second user, prompt the second user to provide a missing
value, and record an input value provided by the second user.
Optionally, the first user and the second user are the same
user.

In another embodiment, the computer system optionally
includes a monitoring module 602. The monitoring module is
configured monitor the users 600 belonging to the different
organizations, and to provide activity data 603 obtained from
monitoring the users 600 to the test identifier 604.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 10
and/or FIG. 11 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented utilizing the same software modules, and/or software
modules running on the same server: the monitoring module
602, the test identifier 604, the subset identifier 606, the
subset selector 608, the run selector 612, the template gen-
erator 614, the customization module 616, and the user inter-
face 618. Additionally, one or more of the aforementioned
components may be implemented on a remote server, such as
a cloud-based server. In one example, subset identifier 606
and the subset selector 608 are both implemented as software
running on the same server. In another example, the subset
identifier 606, the subset selector 608, the runs selector 612,
and the template generator 614 are implemented as a cloud-
based service that receives runs of test scenarios run by the
users 600 belonging to the different organizations, and gen-
erates templates that may be offered new users. In this
example, the customization module 616 may also be part of
the cloud-based service, and may be used to prepare a tem-
plate to be utilized by users. Optionally, each of the customi-
zation module 616 and the run selector 612 may be imple-
mented as modules of the template generator 614.

FIG. 12 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from
runs of test scenarios that include a subset of test steps. The
illustrated embodiment includes the following steps:

In step 641, identifying runs of test scenarios run by users
belonging to different organizations on software systems that
belong to the different organizations; each run of a test sce-
nario describes test steps.

In step 642, identifying subsets of test steps that are fre-
quently described in the runs of the test scenarios. Optionally,
a subset of test steps is frequently described in the runs of the
test scenarios if the test steps included in the subset are
described in at least a predetermined number of the runs of
test the test scenarios. Optionally, a subset of test steps is
frequently described in the runs of the test scenarios if the test
steps included in the subset are described in runs of test
scenarios associated with at least a predetermined number of
different organizations.

In step 643, receiving a profile of a first user.

In step 644, selecting, based on the profile, a certain subset,
from among the subsets, which is appropriate for the first user.

In step 645, selecting, from among the identified runs, a
first run of a first test scenario and a second run of a second test
scenario. The first run is associated with a first organization
belonging to the different organizations and the second run is
associated with a second organization belonging to the dif-
ferent organizations. In addition, the first run includes a first
subset of test steps that is essentially identical to the certain
subset and the second run includes a second subset of test

20

25

35

40

45

50

55

32

steps that is essentially identical to the certain subset. Option-
ally, the first organization and the second organization are
different organizations. Optionally, the first user is not asso-
ciated with any of the first organization and the second orga-
nization.

And in step 646, generating a test scenario template based
on the first and second subsets of test steps.

In one embodiment, the computer implemented method
includes an additional optional step 647, which involves cus-
tomizing the test scenario template for the first user by adding
to the test scenario template proprietary data relevant to the
first user. Optionally, customizing the test scenario template
involves obtaining a value from a run of a previously moni-
tored test scenario associated with the first user, and substi-
tuting a non-empty subset of the removed proprietary data
with the obtained value. Alternatively or additionally, cus-
tomizing the test scenario template may involve parsing a
manual test scenario associated with the first user in order to
obtain a value associated with the first user, and substituting a
non-empty subset of the removed proprietary data with the
obtained value. Alternatively or additionally, customizing the
test scenario template may involve analyzing a database of the
software system associated with the first user to obtain a value
associated with the first user, and substituting a non-empty
subset of the removed proprietary data with the obtained
value.

In one embodiment, customizing the test scenario template
in step 647 involves: providing the test scenario template to a
second user, prompting the second user to provide a missing
value, and recording an input value provided by the first user.
Optionally, the first user and the second user may be the same
user.

In one embodiment, the computer implemented method
includes an additional optional step 648 involving suggesting
to the first user to run an instantiation of the customized test
scenario template. For example, the user interface 618 may be
utilized to present the template to the first user.

In one embodiment, the computer implemented method
illustrated in FIG. 12 includes an optional step of removing
proprietary data associated with at least one of the different
organizations from at least one of the runs of test scenarios.
Optionally, most output fields of the first and second runs are
removed, and as a result, the test scenario template does not
include expected values for most test steps. Additionally or
alternatively, the computer implemented method may include
a step of removing proprietary data that is associated with at
least one of the first and second organizations from the tem-
plate.

In one embodiment, the computer implemented method
includes an additional step 640, which involves monitoring
the users belonging to different organizations and providing
data collected in the monitoring for the identifying of the runs
of test scenarios.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a test scenario template from runs of test scenarios
that include a subset of test steps. The computer includes a
processor, and the non-transitory computer-readable medium
stores the following program code:

Program code for identifying runs of test scenarios run by
users on software systems that belong to different organiza-
tions; each run of a test scenario describes test steps.

Program code for identifying subsets of test steps that are
frequently described in the runs of the test scenarios.

Program code for receiving a profile of a first user.

Program code for selecting, based on the profile, a certain
subset, from among the subsets, which is appropriate for the

US 9,317,404 B1

33

first user. Optionally, a subset of test steps is frequently
described in the runs of the test scenarios if the test steps
included in the subset are described in at least a predeter-
mined number of the runs of test the test scenarios. Option-
ally, a subset oftest steps is frequently described in the runs of
the test scenarios if the test steps included in the subset are
described in runs of test scenarios associated with at least a
predetermined number of different organizations.

Program code for selecting, from among the identified
runs, a first run of a first test scenario and a second run of a
second test scenario. The first run is associated with a first
organization belonging to the different organizations and the
second run is associated with a second organization belong-
ing to the different organizations. Additionally, the first run
involves a first subset of test steps that is essentially identical
to the certain subset and the second run involves a second
subset of test steps that is essentially identical to the certain
subset. Optionally, the first organization and the second orga-
nization are different organizations. Optionally, the first user
is not associated with any of the first organization and the
second organization.

And program code for generating a test scenario template
based on the first and second subsets of test steps.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring activ-
ity of the users on software systems belonging to the different
organizations and providing data obtained from the monitor-
ing for use in the identifying of the runs of the test scenarios.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for suggesting to the
first user to run an instantiation of the customized test sce-
nario template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for removing propri-
etary data associated with at least one of the different orga-
nizations from at least one of the runs of test scenarios.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for removing propri-
etary data associated from at least one of the first organization
and the second organization from the test scenario template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for customizing the
test scenario template for the user by adding to the test sce-
nario template proprietary data relevant to the user.

FIG. 13 illustrates generation of a test scenario template
664 from a subset of test steps 662 that is frequently executed
as part of running test scenarios. In this illustration, each test
step corresponds to a transaction executed when running a
test scenario. Thus, transactions 001 to 012 (“Trans 001 to
“Trans 012" in FIG. 13) may be considered to correspond to
12 possible test steps that may be included in the template
664. Runs of test scenarios 660A-D include multiple test
steps that involve running subsets of the various transactions
001 to 012. A certain subset of test steps 662 that involve
transactions 004, 005, and 008 appears in each of the runs
660A-D (these transaction are emphasized in bold in the runs
660A-660D). The portions relevant to the certain subset (are
taken from the runs 660A-4 and combined into test scenario
template 664. Note that the test scenario template involves
running only the common subset of test steps (transactions
004, 005, and 008), and no other transactions executed as part
of other test steps in the runs 660A-D.

FIG. 14 and FIG. 15 illustrate embodiments of a computer
system configured to generate a test scenario template from a
cluster of similar partial runs of test scenarios. The computer

40

45

34

system includes at least the test identifier 704, a subset extrac-
tor 706, a clustering module 708, a cluster selector 710, and a
template generator 712.

The test identifier 704 is configured to identify runs of test
scenarios run by users on software systems that belong to
different organizations. Optionally, the users belong to dif-
ferent organizations. Optionally, the runs are identified, at
least in part, from activity data 703. In one example, the
identified runs include at least a first run that was run by a first
user belonging to a first organization and a second run that
was run by a second user belonging to a second organization,
and the first organization is not the second organization and
the first user is not the second user.

In one embodiment, atest scenario may be characterized as
including test steps, running the test scenario may involve
execution of the test steps, and a run of the test scenario may
describe the test steps. Optionally, the test identifier 704
determines for at least some of the runs of the test scenarios,
at least some of the test steps that are executed while running
the test scenarios. Optionally, test steps may be identified by
various ways, such as by a name, code, description, and/or
serial number. Optionally, each run of the at least some runs,
is associated with at least one subset of test steps that were
executed in the run.

The subset extractor 706 is configured to receive a run of a
test scenario and to generate from the run of the test scenario
a partial run of the test scenario by extracting from the run of
the test scenario data pertaining to a proper subset of the test
steps described in the run. The partial run is a run of a test
scenario that includes data from the received run of a test
scenario that pertains to the test steps belonging to the proper
subset of the test steps. Optionally, the extracted data pertain-
ing to the proper subset also pertains to other test steps that do
not belong to the proper subset. For example, at least some of
the extracted data includes an input value used for a test step
that is not in the proper subset. Optionally, the extracted data
is marked as relevant to the proper subset. For example, a file
containing a run of a test scenario may be associated with a
record indicating certain portions of the file.

In one embodiment, a partial run is generated by parsing
the received run of the test scenario and selecting certain
portions of the received run to be included in the partial run.
Optionally, the certain portions are related to the proper sub-
set of the test steps. Optionally, the certain portions may
undergo processing prior to being included in the partial run.

In another embodiment, a partial run is generated by pro-
cessing data included in the received run of the test scenario;
for example, summarizing the received run, converting rep-
resentation of data in the received run (e.g., from a list of
commands to a table of test steps), and/or representing data in
the received run using canonical data (e.g., test steps in the
received run are described by default or exemplary test steps
that are similar to them). Thus, in some cases, the partial run
that is generated from the received run may not necessarily
contain portions of the received run as they appear in the
received run.

In one embodiment, the proper subset of the test steps
described in the run has a predetermined size. For example,
predetermined size may be two or three. Alternatively, the
proper subset may have different sizes under different cir-
cumstances. For example, the size may be proportional to the
average number of test steps in the runs of test scenarios (e.g.,
at least 20% of the average number of test steps).

Herein, the term “proper subset” is used as follows: set A is
aproper subset of set B if set B includes all elements in set A,
and additionally set B includes at least one element that is not
in set A.

US 9,317,404 B1

35

In one embodiment, the subset extractor 706 receives an
indication of which test steps are included in the run of the test
scenario. For example, the indication is received from the test
identifier 704. Additionally or alternatively, the subset extrac-
tor 706 may participate in the identification of at least some of
the test steps that belong to the run of the test scenario.

In one embodiment, each run of a test scenario includes a
sequence of test steps and the proper subset of the test steps in
the run includes a subsequence of the sequence of the test
steps in the run. In one example, the subsequence is a prefix of
the sequence of test steps or a suffix of the sequence of test
steps. In another example, the subsequence is an internal
subsequence, which does not include the first or the last test
steps in the sequence.

Asused herein, a prefix of a sequence is a subsequence that
starts with the first test step in the sequence. Similarly, a suffix
of'a sequence is a subsequence that ends with the last test step
in the sequence.

In one embodiment, the subset extractor 706 is configured
to generate from the run of the test scenario a number, greater
than one, of partial runs of the test scenario. Optionally, each
partial run of the number of partial runs is generated from a
different proper subset of test steps. Optionally, the number of
partial runs that is generated from a run of a test scenario is a
fixed predetermined number. Alternatively, the number of
partial runs is proportional to the number of test steps in the
run of the test scenario. In one example, the number of partial
runs is linear in the number of test steps in the run. In another
example, the number of partial runs increases quadratically
with the number of test steps in the run.

In one embodiment, the proper subset of the test steps
described in the run includes at least one test step that is
frequently executed when running the test scenarios. Option-
ally, a test step is considered frequently executed as part of
running the test scenarios if the test step is described in at least
a predetermined number of the runs of test the test scenarios.
Additionally or alternatively, a test step may be considered
frequently executed if the test step is described in runs of test
scenarios that are associated with at least a predetermined
number of different organizations.

The clustering module 708 is configured to receive partial
runs of test scenarios generated from the runs of the test
scenarios and to cluster the partial runs of the test scenarios to
clusters that include similar partial runs. Optionally, the clus-
ters may be of various sizes, and include partial runs of
different users belonging to different organizations.

It is to be noted, that partial runs of test scenarios may be
treated by system modules essentially the same as runs of a
test scenarios would be treated, since the partial runs may
include the same type of data as the runs of test scenarios
and/or data derived from the runs of the test scenarios. Thus,
the partial runs may be clustered utilizing the same
approaches used for clustering the runs of test scenarios (e.g.,
algorithms, vector representation, and similarity functions).
Additionally, partial runs may undergo removal of propri-
etary data, and/or customization, similarly to how runs of'test
scenarios undergo these processes. Additionally, partial runs
may be utilized to generate test scenario templates similarly
to how runs of test scenarios may be utilized for that purpose.

The cluster selector 710 is configured to receive a profile
711 of a first user and, based on the profile 711, to select a
certain cluster, from among the clusters of partial runs, which
is appropriate for the first user. Optionally, the profile 711
indicates test steps that are likely to be relevant to the first
user. For example, the profile 711 may include previous runs
of test scenarios of the first user and/or list specific transac-
tions executed by the first user and/or an organization to

10

15

20

25

30

35

40

45

50

55

60

65

36

which the first user belong. Optionally, the certain cluster
contains a partial run with at least one test step that involves
execution of a transaction that is not mentioned in the profile
711. Optionally, the certain cluster contains at least one par-
tial run with a test step that involves a value that is not
mentioned in the profile 711.

The template generator 712 is configured to generate a test
scenario template 713 based on the first and second runs.
Optionally, the test scenario template 713 identifies a trans-
action used in the first and second runs, and possible values
for running the transaction. Optionally, the identified trans-
action is a transaction that was tested in both the first and
second runs, and the possible values for running the identified
transaction are obtained directly from the first and/or second
runs, or derived from the first and/or second runs.

In one embodiment, the computer system optionally
includes a customization module 714. The customization
module 714 is configured to customize the test scenario tem-
plate 713 for the first user by adding to the test scenario
template 713 proprietary data relevant to the first user.
Optionally, at least some of the proprietary data is obtained
from the profile 711. Additionally, the computer system may
include an optional user interface 718 configured to suggest to
the first user to run an instantiation of the test scenario tem-
plate.

In one embodiment, the computer system optionally
includes a data cleaner 716. The data cleaner 716 is config-
ured to remove from the template proprietary data. Addition-
ally or alternatively, the data cleaner may be configured to
remove proprietary data from the partial runs, form the runs of
the test scenarios, and/or from the activity data 703. Option-
ally, the data cleaner 716 is also configured to remove a
selected value from a run or a partial run based on at least one
of: number of runs of test scenarios in which the value
appears, and number of different organizations associated
with the runs of the test scenarios in which the value appears.
Optionally, most output fields of the first and second partial
runs are removed, and as a result, the test scenario template
does not include expected values for most test steps.

In another embodiment, the computer system optionally
includes a monitoring module 702. The monitoring module
702 is configured monitor the users 700 that belong to the
different organizations and to provide the activity data 703
obtained from monitoring the users 700 to the test identifier
704.

In one embodiment, determining whether a cluster of par-
tial runs is suitable for the first user is based on the profile 711.
Optionally, the cluster may be considered suitable for the first
user if partial runs belonging to the cluster describe at least
one test step that is indicated in the profile 711 as being
frequently described in runs of test scenarios of the first user.
Optionally, a test step is indicated as being frequently
described in runs of the first user if the profile 711 indicates
that it was executed a large number of times. For example, the
test step was executed more than 10 times, and/or in more
than 5% of the runs. Optionally, a test step is indicated as
being frequently described in runs of the first user if the
profile 711 includes a large number of runs of test scenarios
that describe the test step as being executed in the test sce-
narios. For example, the test step is described in 5% of runs
that are included in the profile 711 and/or at least 17 different
runs included in the profile 711.

In another embodiment, a cluster of partial runs is suitable,
based on the profile 711, for the first user if partial runs
belonging to the cluster utilize at least one value included in
the profile 711 of the first user. For example, if the profile 711
indicates that the first user access an external database, a

US 9,317,404 B1

37

cluster that includes partial runs that have a test step that
involves the same external database (e.g., by reading from it
or writing to it), may be considered suitable for the first user.

In yet another embodiment, a cluster of partial runs is
suitable, based on the profile 711, for the first user if partial
runs belonging to the cluster include a frequently described
subset of test steps. Additionally, the profile 711 indicates that
at least one test step belonging to the subset is utilized by the
first user. For example, the at least one test step is described in
runs of test scenarios included in the profile 711. In another
example, one or more similar test steps to the at least one test
step are described in runs of test scenarios included in the
profile 711. Optionally, a subset of test steps may be consid-
ered frequently described if the test steps included in the
subset are described in at least a predetermined number of the
partial runs. For example, the predetermined number may be
10 or 5% of the partial runs. Optionally, a subset of test steps
may be considered frequently described if the test steps
included in the subset are described in partial runs associated
with at least a predetermined number of different organiza-
tions. For example, the predetermined number may be 3 or
10% of the different organizations.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 14
and/or FIG. 15 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented utilizing the same software modules, and/or software
modules running on the same server: the monitoring module
702, the test identifier 704, the subset extractor 706, the clus-
tering module 708, the cluster selector 710, the template
generator 712, the customization module 714, the data
cleaner 716, and the user interface 718. Additionally, one or
more of the aforementioned components may be imple-
mented on a remote server, such as a cloud-based server.

In one example, subset extractor 706 and the clustering
module 708 are both implemented as software running on the
same server. Optionally, the clustering module 708 extracts
subsets and generates partial runs prior to clustering. In
another example, the cluster selector 710 and the template
generator 712 are realized by the same software module,
which receives the profile 711 and generates the template 713.
In another example, the subset extractor 706, the clustering
module 708, the cluster selector 710, and the template gen-
erator 712 are implemented as a cloud-based service that
receives runs of test scenarios run by the users 700 belonging
to the different organizations, and generates templates that
may be offered new users. In this example, the data cleaner
716 and/or the customization module 714 may also be part of
the cloud-based service, and may be used to prepare a tem-
plate to be utilized by users. Optionally, each of the customi-
zation module 714 and the data cleaner 716 may be imple-
mented as modules of the template generator.

In one embodiment, the template 713 undergoes customi-
zation by the customization module 714 prior to removal of
proprietary data from the template 713 by the data cleaner
716. In another embodiment, the order is reversed: propri-
etary data is removed from the template 713 by the data
cleaner 716, and then the template 713 is customized by the
customization module 714. In still another embodiment, cus-
tomizing the template 713 and removing proprietary data
from it are performed by the same software module. Option-
ally, the software module utilizes the profile 711 to determine
which proprietary dataneeds to be removed from the template
713, and which proprietary data should be added to the tem-
plate 713 when customizing it.

FIG. 16 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from a

10

15

20

25

30

35

40

45

50

55

60

65

38

cluster of subsets of test steps taken from runs of test sce-
narios. The illustrated embodiment includes the following
steps:

In step 742, identifying runs of test scenarios run by users
on software systems that belong to different organizations.
Each run of the identified runs of a test scenario describes test
steps.

In step 744, generating partial runs of the test scenarios by
extracting from each run of a test scenario data pertaining to
a proper subset of the test steps described in the run. Option-
ally, a partial run is itself a run of a test scenario. Optionally,
a partial run generated from a run of a test scenario includes
information taken from the run that pertains to the test steps
belonging to the proper subset of the test steps. Optionally, the
proper subset of the test steps in the run has a predetermined
size, such as two or three. Optionally, each run of a test
scenario includes a sequence of test steps and the proper
subset of the test steps in the run includes a subsequence of the
sequence of the test steps in the run. Optionally, the subse-
quence is a prefix of the sequence of test steps or a suffix of the
sequence of test steps.

In step 746, clustering the partial runs of the test scenarios
into clusters of similar partial runs. Optionally, the clustering
involves processing one or more of the following logged
activities: a list of users who ran the test scenarios, an analysis
of access to a database, messages returned from executed
transactions, values returned by fields, and procedures uti-
lized by a test scenario.

In step 748, receiving a profile of a first user.

In step 750, selecting, based on the profile, from among the
clusters a certain cluster suitable for the first user. Optionally,
the certain cluster includes a first partial run of a first test
scenario that is associated with a first organization belonging
to the different organizations, and a second partial run of a
second test scenario that is associated with a second organi-
zation belonging to the different organizations.

And in step 752, generating a test scenario template based
on the first and second partial runs. Optionally, the test sce-
nario template identifies a transaction used in the first and
second partial runs, and possible values for running the trans-
action. Optionally, at least one of the possible values for
running the transaction does not appear in each of the first and
second partial runs. Optionally, the test scenario template
includes a combination of the possible values, and the com-
bination does not appear in any of the first and second partial
runs.

In one embodiment, the computer implemented method
optionally includes an additional step 740, which involves
monitoring the users belonging to different organizations and
providing data collected in the monitoring for the identifying
of the runs of test scenarios.

In one embodiment, the computer implemented method
optionally includes an additional step 756, which involves
customizing the test scenario template for the first user by
adding to the test scenario template proprietary data relevant
to the first user. In one example, customizing the test scenario
template involves obtaining a value from a run of a previously
monitored test scenario associated with the first user, and
substituting a non-empty subset of the removed proprietary
data with the obtained value. In another example, customiz-
ing the test scenario template involves parsing a manual test
scenario associated with the first user in order to obtain a
value associated with the first user, and substituting a non-
empty subset of the removed proprietary data with the
obtained value. In yet another example, customizing the test
scenario template involves analyzing a database of the soft-
ware system associated with the first user to obtain a value

US 9,317,404 B1

39

associated with the first user, and substituting a non-empty
subset of the removed proprietary data with the obtained
value.

In one embodiment, customizing the test scenario template
involves: providing the customized test scenario template to a
second user, prompting the second user to provide a missing
value, and recording an input value provided by the first user.
Optionally, the first user and the second user may be the same
user.

In one embodiment, the computer implemented method
may include an optional step 758 involving suggesting to the
first user to run an instantiation of the test scenario template.
For example, the user interface 718 may be utilized to present
the template to the first user.

In one embodiment, the computer implemented method
optionally includes step 754, which involves removing pro-
prietary data associated with at least one of the different
organizations from at least one of the partial runs of test
scenarios. Optionally, most output fields of the first and sec-
ond partial runs are removed, and as a result, the test scenario
template does not include expected values for most test steps.
Additionally or alternatively, the computer implemented
method may also include a step of removing proprietary data
associated with the first organization from the first partial run.
Additionally or alternatively, the computer implemented
method may also include a step of removing proprietary data
associated from at least one of the first organization and the
second organization from the test scenario template.

In one embodiment, generating the partial runs in step 744
involves generating from the received run a number greater
than one of partial runs of the test scenario; each partial run of
the number of partial runs is generated from a different proper
subset of test steps. Optionally, the number of partial runs is a
fixed predetermined number. Alternatively, the number of
partial runs is proportional to number of the test steps in the
run of the test scenario.

In one embodiment, clustering partial runs of test scenarios
ins step 746 involves processing one or more of the following
logged activities: a list of users who ran the test scenarios, an
analysis of access to a database, messages returned from
executed transactions, values returned by fields, and proce-
dures utilized by a test scenario.

In one embodiment, similar partial runs of test scenarios
are characterized by having at least one of: essentially the
same fields, essentially the same field values, similar combi-
nations of fields, similar combinations of field values, similar
execution of transactions, similar user interactions, similar
requests, similar calls to procedures, similar executions.

In one embodiment, the clustering of the partial runs to
clusters that include similar partial runs of test scenarios is
based on counting the number of similar fields used in screens
corresponding to the runs; the more similar fields, the more
similar the runs of the test scenarios are considered to be.

In another embodiment, the clustering of the partial runs of
test scenarios to clusters that include similar partial runs of
test scenarios is based on similarity between order of display-
ing similar fields in screens corresponding to the runs; the
closer the orders, the more similar the runs are considered to
be.

In yet another embodiment, the clustering of the partial
runs of test scenarios to clusters comprising similar partial
runs is based on similarity between executed procedures asso-
ciated with the test scenarios. Optionally, the clustering is also
based on the order of executing the procedures. Optionally,
the clustering is also based on transactions executed as part of
the runs of test scenarios.

10

15

25

30

35

40

45

50

55

60

40

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a test scenario template from a cluster of similar
partial runs of test scenarios. The computer includes a pro-
cessor, and the non-transitory computer-readable medium
stores the following program code:

Program code for identifying runs of test scenarios run by
users on software systems that belong to different organiza-
tions; each run of a test scenario describes test steps.

Program code for generating partial runs of the test sce-
narios by extracting from each run of a test scenario data
pertaining to a proper subset of the test steps described in the
run. Optionally, a partial run is itself a run of a test scenario.
Optionally, a partial run generated from a run of a test sce-
nario includes information taken from the run that pertains to
the test steps belonging to the proper subset of the test steps.
Optionally, the proper subset of the test steps in the run has a
predetermined size, such as two or three. Optionally, each run
of a test scenario includes a sequence of test steps and the
proper subset of the test steps in the run includes a subse-
quence of the sequence of the test steps in the run. Optionally,
the subsequence is a prefix of the sequence of test steps or a
suffix of the sequence of test steps.

Program code for clustering the partial runs of the test
scenarios into clusters of similar partial runs.

Program code for receiving a profile of a first user.

Program code for selecting, based on the profile, from
among the clusters a certain cluster suitable for the first user;
the certain cluster comprises a first partial run of a first test
scenario that is associated with a first organization belonging
to the different organizations, and a second partial run of a
second test scenario that is associated with a second organi-
zation belonging to the different organizations. Optionally,
the first user is not associated with at the first organization and
the first user is not associated with the second organization.

And program code for generating a test scenario template
based on the first and second partial runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring activ-
ity of the users on software systems belonging to the different
organizations and providing data obtained from the monitor-
ing to be used in the identifying of the runs of the test sce-
narios.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for suggesting to the
first user to run an instantiation of the test scenario template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for removing propri-
etary data associated with at least one of the different orga-
nizations from at least one of the runs of test scenarios.
Additionally or alternatively, the non-transitory computer-
readable medium may optionally store program code for
removing proprietary data associated with the first organiza-
tion from the first partial run. Additionally or alternatively, the
non-transitory computer-readable medium may optionally
store program code for removing proprietary data associated
from at least one of the first organization and the second
organization from the test scenario template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for customizing the
test scenario template for the first user by adding to the test
scenario template proprietary data relevant to the first user.

In one embodiment, the program code for clustering
includes program code for processing one or more of the
following logged activities: a list of users who ran the test
scenarios, an analysis of access to a database, messages

US 9,317,404 B1

41

returned from executed transactions, values returned by
fields, and procedures utilized by a test scenario.

FIG. 17 illustrates one embodiment of a computer system
configured to generate a test scenario template based on simi-
larity between setup files associated with different organiza-
tions. The computer system includes at least a test identifier
181, a processor 182, a template generator 184, and a data
cleaner 186.

The test identifier 181 is configured to identify runs of test
scenarios run by users on software systems that belong to the
different organizations. In this embodiment, each organiza-
tion of the different organizations is associated with a differ-
ent setup file customized for the organization.

The processor 182 is configured to receive the setup files
1815 that are associated with the different organizations and
a certain setup file 181qa that is associated with a certain
organization. The processor 182 is also configured to identify,
based on similarity between the certain setup file 181a and the
setup files 1815, similar organizations, from among the dif-
ferent organizations, which are similar to the certain organi-
zation.

In one embodiment, an organization may be considered
similar to the certain organization if the similarity between
the certain setup file 181a and a setup file of the organization
exceeds a predetermined threshold. For example, the number
of configuration elements that are common to both setup files
reaches a predetermined threshold (e.g., 40% of the configu-
ration elements in the certain setup file are also present in the
setup file of the organizations, and vice versa).

In another embodiment, a predetermined proportion of the
different organizations that have the most similar setup files to
the certain setup file 181a are considered similar to the certain
organization. For example, the top 20% of the different orga-
nizations that have the most similar setup files are considered
similar to the certain organization.

The processor 182 is also configured to identify a run of a
specific test scenario that is utilized by one or more of the
similar organizations. Optionally, selection of the run of the
specific test scenario is based on the certain setup file 181a4.
For example, based on the certain setup file 181a, it may be
determined which modules and/or business processes are
utilized by the certain organization, and the specific test sce-
nario involves one or more of those modules and/or business
processes. Optionally, selection of the run of the specific test
scenario is based on a profile of the certain organization
which indicates which business processes and/or modules it
typically utilizes.

In one embodiment, the run of the specific test scenario is
a run by a user belonging to an organization with a setup file
that has high similarity to the certain setup file 181a. Option-
ally, the run of the specific test scenario is a run by a user
belonging to an organization with a setup file that has highest
similarity to the certain setup file 181a.

In another embodiment, the specific test scenario is a test
scenario widely utilized by the similar organizations. For
example, of all the test scenarios which have instantiated runs
identified by the test identifier 181, the specific test scenario is
one that has instantiated runs associated with the largest num-
ber of similar organizations. In another example, the specific
test scenario is a test scenario that has a large number of
instantiations of runs that are associated with one or more of
the similar organizations. For example, there are at least 100
different runs of the specific test scenario that are associated
with organizations belonging to the similar organizations.

The template generator 184 is configured to generate the
test scenario template based on the run of the specific test
scenario. Optionally, the template identifies a transaction

10

15

20

25

30

35

40

45

50

55

60

65

42

used in the run of the specific test scenario, and possible
values for running the transaction. For example, the template
may include identifiers of transactions and/or code that run
the transactions. Additionally, the template may include val-
ues for running the transaction such as default input values
that the transaction can use.

The data cleaner 186 is configured to remove from the test
scenario template proprietary data associated with at least one
of'the similar organizations. Additionally or alternatively, the
data cleaner 186 may be configured to remove proprietary
data from the run of the specific test scenario. Optionally,
most output fields of the run of the specific test scenario are
removed, and as a result, the test scenario template does not
include expected values for most test steps. Optionally, the
output fields may be removed by the data cleaner 186, the
template generator 184, a customization module 188, and/or
by another suitable module or combination of modules.

In one embodiment, a value in the test scenario template
may be considered proprietary and consequently removed
from the template. Optionally, the proprietary value is
removed by the data cleaner 186 and/or a different module
such as the template generator 184. Optionally, a decision on
whether a value is proprietary may be based on atleast one of:
a number of the runs of test scenarios that include the value,
and a number of different organizations associated with the
runs of the test scenarios in which the value appears. Option-
ally, if the number of runs in which the value appears is below
a certain threshold and/or the number of organizations asso-
ciated with runs in which the certain value appears is below a
certain threshold then the data cleaner 186 may remove the
certain value from the template. Optionally, the data cleaner
186 may enable or restrict the customization module 188
from utilizing a certain value based on whether or not the
certain value is considered proprietary.

Inone embodiment, the specific test scenario was not avail-
able in any test suite of the certain organization prior to
generating the test scenario template. Thus, the generated
template may enable testing of new aspects of a system of the
certain organization that were not tested before.

In one embodiment, the computer system also optionally
includes a customization module 188 that is configured to
customize the test scenario template by adding to the test
scenario template proprietary data relevant to the certain
organization. Optionally, the customization module is con-
figured to utilize data included in the certain setup file 181a to
customize the test scenario template. For example, the certain
setup file 181a may include organizations-specific values that
may be utilized as default values when running instantiations
of the template.

In one embodiment, the computer system also optionally
includes a user interface 189 that is configured to suggest to a
user to run an instantiation of the test scenario template.
Optionally, the user belongs to the certain organization.

In one embodiment, the processor 182 is also configured to
receive usage data associated with the certain organization,
and utilize the usage data to identify the run of the specific test
scenario. For example, the usage data may indicate which
modules, business processes, and/or transactions are utilized
by the certain organization and/or extent at which the certain
organization utilizes certain modules, business processes,
and/or transactions. This data may be used to guide the selec-
tion of a specific test scenario that involves similar modules,
business processes, and/or transactions to the ones that are
utilized by the certain organization.

In one embodiment, the computer system also includes a
monitoring module 180 that is configured to monitor the users

US 9,317,404 B1

43

100 belonging to the different organizations to identify runs
of test scenarios run on software systems belonging to the
different organizations.

In one embodiment, the processor 182 is also configured to
identify a second run of the specific test scenario, and the
template generator 184 is also configured to generate the test
scenario template based on the second run. The generated test
scenario template identifies a transaction used by the run of
the specific test scenario the second run of the specific test
scenario, and possible values for running the transaction.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the run of the specific
test scenario the second run of the specific test scenario.
Optionally, the test scenario template includes a combination
of values, which does not appear in any of the run of the
specific test scenario the second run of the specific test sce-
nario.

In another embodiment, the processor 182 is also config-
ured to identify a second run of a second test scenario, and the
template generator 184 is also configured to generate the test
scenario template based on the second run. The generated test
scenario template identifies a transaction used by the run of
the specific test scenario the second run of the specific test
scenario, and possible values for running the transaction.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the run of the specific
test scenario the second run of the second test scenario.
Optionally, the test scenario template includes a combination
of values which does not appear in any of the run of the
specific test scenario the second run of the second test sce-
nario.

In one embodiment, a setup file is a source of information
(e.g., program code and/or a data file), that may be used to
control and/or customize a software system. In one example,
a setup file may be used to define the way a business process
works. Business processes are often designed and/or devel-
oped in a parametric way; the setup file may contain values for
many system parameters that can be set in order to define how
the system behaves. In another example, a setup file may
indicate which screens are to be utilized in a business process,
and/or the layout and/or content of screens; for instance, field
names, field locations, and/or field values that are to appear in
screens. In yet another example, a setup file may indicate
logic that links between screens (e.g., logic that controls the
transition between various screens when a user is interacting
with the software system). In this example, the logic may be
implicitly stated (e.g., by including code that realizes the
logic and/or values that are used by the logic) and/or the logic
may be in the form of indicating certain programs and/or
procedures that may be utilized to control the flow of the
execution of the software system.

In one embodiment, a setup file does not necessarily store
all information that defines how a system behaves. For
example, a setup file may or may not include user permis-
sions. Thus, while in some cases user permissions (e.g.,
access permission to resources) may be stored at a server end
(e.g., a server from which a resource may be accessed), while
the setup file may be stored on the client end (e.g., on a
software system of an organization). In another example, a
setup file may or may not store information related to back-
ing-up data on a system. Optionally, a back-up policy for the
system may be stored on an external system which stores the
backed-up files.

In one embodiment, similarity of setup files is determined
according certain values described in the setup files. Thus,
based on modules, business processes, and/or transactions
that are mentioned in setup files and/or values associated with

25

40

45

55

44

the modules, business processes, and/or transactions, it may
be determined if two setup files are similar and/or a degree of
their similarity. In one example, two setup files may be con-
sidered similar if a certain module or business process is
mentioned in both. In another example, a degree of similarity
between two setup files is proportional to the overlap of
business processes mentioned in the two setup files. Thus,
two setup files may be considered similar if the overlap of
business processes described in both setup file exceeds a
predetermined threshold.

In another embodiment, setup files are treated as docu-
ments, and determining similarity between setup files is done
utilizing natural language and/or semantic analysis methods.
For example, setups file may be represented as a “bag of
words”, e.g., in a vector representation, and various methods
such as latent semantic analysis may be used to find similar
setup files and/or determine the level of similarity between
setup files.

In some embodiments, setup files may become quite large,
e.g., encompassing many business processes and containing
many values. Thus, it may quite difficult to compare these
large and potentially diverse objects, making it unlikely to
find two setup files that are similar enough throughout. How-
ever, certain portions of the setup files may be similar. For
example, two setup files may primarily involve difterent mod-
ules, however, the portions in the two setup files that happen
to involve the same modules may be quite similar. Optionally,
given a run of a test scenario, subsets of setup files that are
relevant to the run are selected and compared in order to
determine similarity of the setup files. For example, given a
run, the specific business processes involved in the run are
identified, and setup files are compared with respect to a
subset of their values that is related to the specific business
processes. Restricting the comparison of the setup files to
certain subsets of the files can both may the comparisons
more computationally tractable and increase the chances of
finding similar setup files.

In one embodiment, usage data associated with the certain
organization is received and utilized for identifying the simi-
lar organizations similar to the certain organization. Option-
ally, the usage data includes data pertaining to one or more
module and/or business process utilized by the certain orga-
nization. Additionally or alternatively, the usage data may
include one or more run of a test scenario associated with the
certain organization. Based on the usage data, similarity
between the setup file of the certain organization and the files
of'the different organizations can be determined with respect
to the usage data. This enables the detection of organizations
that are similar to the certain organization with respect to the
usage data.

In one example, the usage data is received from monitoring
the certain organization. Activities recorded in the usage data,
such as a listing of executed transactions, may be compared
with the activities that characterize a run of a test scenario that
is utilized by one or more of the similar organizations. If the
comparison results in a close hit, the test scenario is consid-
ered to be utilized by the certain organization; if the compari-
son does not result in a close hit, the test scenario is consid-
ered not to be utilized by the certain organization.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 17 in
different ways. For example, in some embodiments one or
more of the following may be implemented as software mod-
ules running on the processor 182: the monitoring module
180, the test identifier 181, the template generator 184, the
data cleaner 186, the customization module 188, and the user
interface 189. Additionally, one or more of the aforemen-

US 9,317,404 B1

45

tioned components may be implemented on a remote server,
such as a cloud-based server. Optionally, one or more of the
aforementioned modules may be realized, at least in part, by
the same software module.

In one example, the customization module 188 and/or the
data cleaner 186 are both implemented as part of the template
generator 184. In another example, the test identifier 181 and
the monitoring module 180 are realized by the same software
module that both performs monitoring and analyzes data
obtained from the monitoring in order to identify the runs of
the test scenarios. In another example, the monitoring module
180 is realized at least in part as a software module that runs
on software systems with which the users interact in order to
run the test scenarios. The test identifier 181, may be imple-
mented at least in part as a remote service (e.g., a cloud-based
service) that receives data obtained from the monitoring.

In one embodiment, the test scenario template undergoes
customization by the customization module 188 prior to
removal of proprietary data from the template by the data
cleaner 186. In another embodiment, the order is reversed:
proprietary data is removed from the template by the data
cleaner 186, and then the template is customized by the cus-
tomization module 188. In still another embodiment, custom-
izing the template and removing proprietary data from it are
performed by the same software module. Optionally, the soft-
ware module utilizes the certain setup file 181a and/or the
setup files 1815 to determine which proprietary data needs to
be removed from the template, and which proprietary data
should be added to the template when customizing it.

FIG. 18 illustrates one embodiment of a computer system
configured to generate a test scenario template based on simi-
larity between descriptions associated with different organi-
zations. The illustrated embodiment includes at least a moni-
toring module 190, a processor 192, a template generator 194,
and a data cleaner 196.

The monitoring module 190 is configured to monitor users
100 belonging to different organizations to identify runs of
test scenarios run on software systems belonging to the dif-
ferent organizations. Optionally, the monitoring is done at
least in part on the software systems belonging to the different
organizations. For example, the monitoring module 190
includes modules that are installed on the software systems of
the different organizations and collects data generated while
the users 100 are running the test scenarios. Additionally or
alternatively, the monitoring module 190 may operate
remotely from the software systems of the different organi-
zations. For example, the monitoring module may be imple-
mented, at least in part, using programs running on a cloud-
based server that receive information related to activity of the
users 100 on the software systems of the different organiza-
tions.

The processor 192 is configured to receive a certain
description 1914 of a certain organization and descriptions
19154 of the different organizations. For example, the certain
description 191¢ may include a field of operation of the
certain organization. The processor 192 is also configured to
identify, based on similarity between the certain description
191a and the descriptions 1915, similar organizations that are
similar to the certain organization.

In one embodiment, an organization may be considered
similar to the certain organization if the similarity between
the certain description 191a and a description of the organi-
zation exceeds a predetermined threshold. In another embodi-
ment, a predetermined proportion of the different organiza-
tions that have the most similar descriptions to the certain
description 191a are considered similar to the certain organi-
zation. For example, the top 20% of the different organiza-

10

15

20

25

30

35

40

45

50

55

60

65

46

tions that have the most similar descriptions are considered
similar to the certain organization.

The processor 192 is also configured to identify a run of a
specific test scenario that is utilized by one or more of the
similar organizations. Optionally, selection of the run of the
specific test scenario is based on the certain description 191a4.
For example, based on the certain description 1914, it may be
determined which modules and/or business processes are
utilized by the certain organization, and the specific test sce-
nario involves one or more of those modules and/or business
processes. Optionally, selection of the run of the specific test
scenario is based on a profile of the certain organization
which indicates which business processes and/or modules it
typically utilizes.

In one embodiment, the run of the specific test scenario is
arunby a user belonging to an organization with a description
that has high similarity to the certain description 191a.
Optionally, the run of the specific test scenario is a run by a
user belonging to an organization with a description that has
highest similarity to the certain description 191a.

In another embodiment, the specific test scenario is a test
scenario widely utilized by the similar organizations. For
example, of all the test scenarios which have instantiated runs
identified by the monitoring module, the specific test scenario
is one that has instantiated runs associated with the largest
number of similar organizations. In another example, the
specific test scenario is a test scenario that has a large number
of instantiations of runs that are associated with one or more
of the similar organizations. For example, there are at least
100 different runs of the specific test scenario that are asso-
ciated with organizations belonging to the similar organiza-
tions.

In one example, the certain description 191a of the certain
organization comprises usage data associated with the certain
organization, and the processor 192 is further configured to
utilize the usage data to identify the run of the specific test
scenario. For example, the usage data may mention certain
business processes, and the processor 192 may inspect the
runs of various test scenarios to detect a run of a specific test
scenario that involves the certain business processes. Option-
ally, if two descriptions that include usage data may be con-
sidered similar if they both describe usage of a certain number
of business processes. For example, if the two descriptions
have an overlap of at least 25% in the business processes they
described, they may be considered similar. In another
example, if two descriptions have at least 50 business pro-
cesses in common, they may be considered similar.

The template generator 194 is configured to generate the
test scenario template based on the run of the specific test
scenario. Optionally, the template identifies a transaction
used in the run of the specific test scenario, and possible
values for running the transaction. For example, the template
may include identifiers of transactions and/or code that runs
the transactions. Additionally, the template may include val-
ues for running the transaction such as default input values
that the transaction can use.

The data cleaner 196 is configured to remove from the test
scenario template proprietary data associated with at least one
of'the similar organizations. Additionally or alternatively, the
data cleaner 196 may be configured to remove proprietary
data from the run of the specific test scenario. Optionally,
most output fields of the run of the specific test scenario are
removed, and as a result, the test scenario template does not
include expected values for most test steps. Optionally, the
output fields may be removed by the data cleaner 196, the
template generator 194, a customization module 197, and/or
by another suitable module or combination of modules.

US 9,317,404 B1

47

In one embodiment, a value in the test scenario template
may be considered proprietary and consequently removed
from the template. Optionally, the proprietary value is
removed by the data cleaner 196. Optionally, a decision on
whether a value is proprietary may be based on atleast one of:
a number of the runs of test scenarios that include the value,
and a number of different organizations associated with the
runs of the test scenarios in which the value appears. Option-
ally, if the number of runs in which the value appears is below
a certain threshold and/or the number of organizations asso-
ciated with runs in which the certain value appears is below a
certain threshold then the data cleaner 196 may remove the
certain value from the template. Optionally, the data cleaner
196 may enable or restrict the customization module 197
from utilizing a certain value based on whether or not the
certain value is considered proprietary.

In one embodiment, the specific test scenario was not avail-
able in any test suite of the certain organization prior to
generating the test scenario template. Thus, the generated
template may enable testing of new aspects of a system of the
certain organization that were not tested before.

In one embodiment, the computer system also includes the
customization module 197 that is configured to customize the
test scenario template by adding to the test scenario template
proprietary data relevant to the certain organization. Option-
ally, the customization module is configured to utilize data
included in the certain description 191a to customize the test
scenario template. For example, the certain description 191a
may include organizations-specific values that may be uti-
lized as default values when running instantiations of the
template.

In one embodiment, the computer system also includes a
user interface 198 that is configured to suggest to a user to run
an instantiation of the test scenario template. Optionally, the
user belongs to the certain organization.

In one embodiment, a description of an organization (e.g.,
the certain description 191a¢) may include information char-
acterizing the organization and/or systems belong to it. For
example, languages used by users belonging to the organiza-
tion, location of the organization, size of the organization,
and/or a field of operation of the organization (e.g., insurance,
defense, communications, etc.) For example, the location of
the organization may change the behavior and logic of a
screens; e.g., tax rules change between countries, and the
related screens presented to users may reflect the differences
in tax rules. In one example, organizations in the same field of
operation are considered similar. Alternatively, organizations
in the same field of operation and having approximately the
same number of employees are considered similar.

In another embodiment, a description of an organization
may include permissions and/or authorizations relevant to a
system of the organization. Such information may assist in
selecting relevant test scenarios for the certain organization
(e.g., a test scenario that involves specific procedures and/or
modules that are utilized by the certain organization). For
example, organizations that implement similar organizational
hierarchies and/or security procedures may be considered
similar (e.g., organizational hierarchies and/or security pro-
cedures may be reflected in listings of permissions included
in the descriptions).

In yet another embodiment, a description of an organiza-
tion (e.g., the certain description 191a) describes usage infor-
mation of the organization; for example, information pertain-
ing to modules and/or business processes utilized by the
certain organization. Optionally, the usage information
includes runs of test scenarios and/or the usage information is
derived from analysis of runs of test scenarios. In one

25

30

35

40

45

55

60

48

example, organizations that have a certain number of modules
in common (e.g., at least 100 software modules are the same),
and/or a certain proportion of their modules in common (e.g.,
at least 50% of the software modules used by the organiza-
tions), are considered similar. In another example, organiza-
tions that have instantiations of the same test scenarios asso-
ciated with them are considered similar. For example, if for
two organizations, at least 10% of the runs of test scenarios
associated with each organization are instantiated from the
same test scenarios, then the two organizations may be con-
sidered similar.

Determining similarity of the certain organization to the
different organization may be based on one or more of the
aforementioned factors. For example, similarity may be
based both on field of operation of the organizations and
usage data of the organizations. In another example, both
usage data and lists of modules utilized by each organization
and descriptions of screens in business processes utilized by
each organization are used to determine the similarity.

In some embodiments, the certain description 191a and the
descriptions 1915 may be converted to feature values.
Optionally, the feature values may be represented as vectors.
In one example, similarity between vectors representing
descriptions is determined based on vector similarity metrics
such as got-product or Pearson correlation. In another
example, similarity is determined based on proximity in a
space of the vectors. For example, a nearest neighbor search
may be performed to find similar vectors. Optionally, a cer-
tain number of organizations with corresponding vectors that
are most similar to a vector representing the certain descrip-
tion 191a are considered similar to the certain organization.
Optionally, organizations whose corresponding vector is
within a certain distance (e.g., within a certain radius) from a
vector representing the certain description 191a, are consid-
ered similar to the certain organization.

In one embodiment, the processor 192 is also configured to
identify a second run of the specific test scenario, and the
template generator 194 is also configured to generate the test
scenario template based on the second run. The generated test
scenario template identifies a transaction used by the run of
the specific test scenario and the second run of the specific test
scenario, and possible values for running the transaction.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the runs. Optionally, the
test scenario template includes a combination of values which
does not appear in any of the runs.

In another embodiment, the processor 192 is also config-
ured to identify a second run of a second test scenario (that is
different from the specific test scenario), and the template
generator 194 is also configured to generate the test scenario
template based on the second run. The generated test scenario
template identifies a transaction used by the runs, and pos-
sible values for running the transaction.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 18 in
different ways. For example, in some embodiments one or
more of the following may be implemented as software mod-
ules running on the processor 192: the monitoring module
190, the template generator 194, the data cleaner 196, the
customization module 197, and the user interface 198. Addi-
tionally, one or more of the aforementioned components may
be implemented on a remote server, such as a cloud-based
server. Optionally, one or more of the aforementioned mod-
ules may be realized, at least in part, by the same software
module.

In one example, the customization module 197 and/or the
data cleaner 196 are both implemented as part of the template

US 9,317,404 B1

49

generator 194. In another example, the monitoring module
190 is realized at least in part as a software module that runs
on Additionally, the monitoring module 190, may be imple-
mented at least in part as a remote service (e.g., a cloud-based
service) that receives data obtained from the monitoring.

In one embodiment, the test scenario template undergoes
customization by the customization module 197 prior to
removal of proprietary data from the template by the data
cleaner 196. In another embodiment, the order is reversed:
proprietary data is removed from the template by the data
cleaner 196, and then the template is customized by the cus-
tomization module 197. In still another embodiment, custom-
izing the template and removing proprietary data from it are
performed by the same software module. Optionally, the soft-
ware module utilizes the certain description 191a and/or the
descriptions 1915 to determine which proprietary data needs
to be removed from the template, and which proprietary data
should be added to the template when customizing it.

FIG. 19 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template based
on similarity between setup files associated with different
organizations. The illustrated embodiment includes the fol-
lowing steps:

In step 200, identifying runs of test scenarios run by users
on software systems that belong to the different organiza-
tions. Each organization of the different organizations is asso-
ciated with a different setup file customized for the organiza-
tion.

In step 201, receiving the setup files and a certain setup file
associated with a certain organization.

In step 202, identifying, based on similarity between the
certain setup file and the setup files, similar organizations
which are similar to the certain organization.

In step 203, identifying a run of a specific test scenario that
is utilized by one or more of the similar organizations.

In step 204, generating the test scenario template based on
the run of the specific test scenario. Optionally, the specific
test scenario was not available in any test suite of the certain
organization prior to generating the test scenario template.

And in step 205, removing from the test scenario template
proprietary data associated with at least one of the similar
organizations. Optionally, not all the proprietary data associ-
ated with at least one of the similar organizations is removed.
Therefore, after removing from the test scenario template
proprietary data associated with at least one of the similar
organizations, the test scenario template may still contain
certain proprietary data associated with at least one of the
similar organizations.

In one embodiment, the computer implemented method
includes an additional optional step 206, which involves cus-
tomizing the test scenario template by adding to the test
scenario template proprietary data relevant to a user. Addi-
tionally, the computer implemented method may include an
additional optional step 207 involving suggesting to the user
to run an instantiation of the test scenario template. For
example, the user interface 189 may be utilized to present the
template to a user belonging to the certain organization.

In one embodiment, customizing the test scenario template
in step 206 involves utilizing data included in the certain setup
file 1814 for customizing the test scenario template for the
certain organization. For example, values included in the
certain setup file 181a may be placed in the template instead
of values that came from runs associated with other organi-
zations.

In another embodiment, customizing the test scenario tem-
plate for the certain organization in step 206 also involves
guiding a user to provide proprietary data relevant to the

10

15

20

25

30

35

40

45

50

55

60

65

50

certain organization. Optionally, guiding the user to provide
proprietary data may involve: providing to the user the test
scenario template from which proprietary data associated
with at least one of the similar organizations was removed,
prompting the user to provide missing values, and recording
the user inputs. Optionally, customizing the test scenario
template for the certain organization is done by adding at least
one of the recorded user inputs to the test scenario template
from which proprietary data associated with at least one of the
similar organizations was removed. Optionally, guiding the
user to provide proprietary data comprises semiautomatic
execution of an instantiation of the test scenario template
from which proprietary data associated with at least one of the
similar organizations was removed.

In one embodiment, the computer implemented method
illustrated in FIG. 19 includes an additional optional step of
receiving proprietary data associated with a certain user. Cus-
tomizing the test scenario template for the certain organiza-
tion may then take place by adding to the test scenario tem-
plate at least some of the received proprietary data associated
with the certain user. Optionally, the received proprietary data
associated with the certain user is generated from previously
recorded runs of test scenarios associated with the certain
user. Optionally, the received proprietary data associated with
the certain user is generated by parsing manual test scenarios
associated with the certain user. Optionally, the received pro-
prietary data associated with the certain user is generated
from analysis of a database of the software system associated
with the certain user. For example, analyzing the database
system may yield certain values associated with the certain
user that may be used for customizing the template.

In one embodiment, step 205 which involves removing
from the test scenario template proprietary data includes
selecting a value derived from the test scenario template.
Following that, removing the selected value from the test
scenario template if the selected value appears in less than a
first predetermined number of the runs of test scenarios or the
selected value appears in runs of test scenarios associated
with less than a second predetermined number of different
organizations. In this embodiment, both the first predeter-
mined number and the second predetermined number are
greater than one.

In another embodiment, step 205 which involves removing
from the test scenario template proprietary data includes:
selecting a value appearing in the run of the specific test
scenario; testing whether the value appears in at least a first
predetermined number of the runs of the test scenarios; test-
ing whether the value appears in runs that are associated with
at least a second predetermined number of different organi-
zations; and if both conditions are positive, enabling customi-
zation of the test scenario template to utilize the selected
value. Optionally, if at least one of the aforementioned con-
ditions is negative, customization of the test scenario template
is not allowed to utilize the selected value.

In one embodiment, the computer implemented method
includes an additional optional step 199, which involves
monitoring the users belonging to different organizations and
providing data collected in the monitoring for the identifying
of the runs of test scenarios.

In one embodiment, the computer implemented method
illustrated in FIG. 19 includes an additional optional step that
involves receiving usage data associated with the certain
organization. Optionally, the usage data is utilized for iden-
tifying the run of the specific test scenario. Additionally or
alternatively, the usage data may be utilized for identifying
the similar organizations which are similar to the certain
organization. In one example, usage data may be used to

US 9,317,404 B1

51

identify business processes utilized by the certain organiza-
tion, database tables accessed by the certain organization,
procedures and/or transactions executed by users belonging
to the certain organization, and/or screens and/or forms uti-
lized by the certain organization.

In one embodiment, the usage data is received from moni-
toring users belonging to the certain organization. The activi-
ties recorded in the usage data are compared with activities
that characterize a test scenario utilized by one or more of the
similar organizations (e.g., users belonging to the one or more
similar organizations ran instantiations of the test scenario). If
the comparison results in a close hit, the test scenario may be
considered to be utilized by the certain organization; if the
comparison does notresultin a close hit, the test scenario may
be considered not to be utilized by the certain organization.

In one embodiment, the computer implemented method
illustrated in FIG. 19 includes an additional optional step that
involves identifying an organization that is most similar to the
certain organization, and selecting a run of a test scenario
associated with the most similar organization as the run of the
specific test scenario. For example, an organization that has
the largest overlap in utilized business processes with the
certain organization (as determined from comparing setup
files), is identified. Following that, a test scenario that has
many runs associated with the identified organization is
selected as the specific test scenario.

In one embodiment, the computer implemented method
illustrated in FIG. 19 includes an additional optional step that
involves identifying a second run of the specific test scenario,
which is not utilized by the certain organization, and the
generating of the test scenario template is also based on the
second run of the specific test scenario. Additionally, the test
scenario template identifies a transaction used by the run of
the specific test scenario and the second run of the specific test
scenario, and possible values for running the transaction.
Optionally, at least one of the possible values for running the
transaction does not appear in each of the run of the specific
test scenario and the second run of the specific test scenario.
Optionally, the test scenario template includes a combination
of'the possible values, and the combination does not appear in
any of the run of the specific test scenario and the second run
of the

FIG. 20 illustrates a computer implemented method for
generating a test scenario template based on similarity
between descriptions with different organizations. The illus-
trated embodiment includes the following steps:

In step 210, monitoring users belonging to different orga-
nizations to identify runs of test scenarios run on software
systems belonging to the different organizations.

In step 211, receiving a certain description of a certain
organization and descriptions of the different organizations.
Optionally, the certain description comprises a field of opera-
tion of the certain organization. Optionally, the certain
description and the descriptions include usage information.
In one example, usage identifies the business processes uti-
lized by the certain organization. In another example, usage
information identifies database tables accessed by the certain
organization and/or the different organization. In yet another
example, usage information may describe procedures, trans-
actions, screens, and/or forms utilized by the certain organi-
zation and/or the different organizations.

In step 212, identifying, based on similarity between the
certain description and the descriptions, similar organizations
that are similar to the certain organization.

In step 213, identifying a run of a specific test scenario that
is utilized by one or more of the similar organizations.

15

25

40

45

50

55

65

52

Optionally, the specific test scenario was not available in any
test suite of the certain organization prior to generating the
test scenario template.

In step 214, generating the test scenario template based on
the run of the specific test scenario

And in step 215, removing from the test scenario template
proprietary data associated with at least one of the similar
organizations. Optionally, not all the proprietary data associ-
ated with at least one of the similar organizations is removed.
Therefore, after removing from the test scenario template
proprietary data associated with at least one of the similar
organizations, the test scenario template may still contain
certain proprietary data associated with at least one of the
similar organizations.

In one embodiment, the method illustrated in FIG. 20 also
includes an optional step of identifying an organization that is
most similar to the certain organization. Additionally, identi-
fying the run of the specific test scenario in step 213 involves
selecting an instantiation of a test scenario associated with the
most similar organization as the run of the specific test sce-
nario.

In one embodiment, the method illustrated in FIG. 20 also
includes an optional step of identifying a second run of the
specific test scenario, which is not utilized by the certain
organization. Additionally, generating of the test scenario
template is also based on the second run of the specific test
scenario. The test scenario template identifies a transaction
used by the run of the specific test scenario and the second run
of the specific test scenario, and possible values for running
the transaction. Optionally, at least one of the possible values
for running the transaction does not appear in each of the run
of'the specific test scenario and the second run of the specific
test scenario. Optionally, the test scenario template includes a
combination of the possible values, and the combination does
not appear in any of the run of the specific test scenario and the
second run of the specific test scenario.

In one embodiment, the computer implemented method
includes an additional step 216, which involves customizing
the test scenario template by adding to the test scenario tem-
plate proprietary data relevant to a user. Additionally, the
computer implemented method may include an additional
step 217 involving suggesting to the user to run an instantia-
tion of the test scenario template. For example, the user inter-
face 198 may be utilized to present the template to a user
belonging to the certain organization.

In one embodiment, step 215 which involves removing
from the test scenario template proprietary data includes
selecting a value derived from the test scenario template.
Following that, removing the selected value from the test
scenario template if the selected value appears in less than a
first predetermined number of the runs of test scenarios or the
selected value appears in runs of test scenarios associated
with less than a second predetermined number of different
organizations. In this embodiment, both the first predeter-
mined number and the second predetermined number are
greater than one. Additionally or alternatively, removing from
the test scenario template proprietary data may also involve:
selecting a value appearing in the run of the specific test
scenario; testing whether the value appears in at least a first
predetermined number of the runs of the test scenarios; test-
ing whether the value appears in runs that are associated with
at least a second predetermined number of different organi-
zations; and if both conditions are positive, enabling customi-
zation of the test scenario template to utilize the selected
value. Optionally, if at least one of the aforementioned con-
ditions is negative, customization of the test scenario template
is not allowed to utilize the selected value.

US 9,317,404 B1

53

In one embodiment, identifying the run of the specific test
scenario template involves clustering runs of test scenarios
associated with the similar organizations into clusters of simi-
lar runs of test scenarios. Following that, selecting a cluster
from the clusters of similar runs of test scenarios. For
example, the selected cluster may be selected from among the
larger clusters and/or it may be a one of the clusters contain-
ing runs of test scenarios associated with a large number of
the similar organizations. Additionally, generating the test
scenario template involves obtaining from the selected cluster
the run of the specific test scenario.

In one example, the run of the specific test scenario is a run
which returns the shortest distance according to a distance
function operating on runs of test scenarios belonging to the
selected cluster. Optionally, the distance function measures a
distance between pairs of runs of test scenarios in the selected
cluster, and a run having a minimal average distance from
other runs in the selected cluster is selected as the run of the
specific test scenario.

In another example, the specific test scenario is one of the
most popular test scenarios from among test scenarios with
runs belonging to the selected cluster. Optionally, popularity
of a test scenario is proportional to the number of users who
used it (i.e., ran it). Optionally, popularity of a test scenario is
proportional to the number of organizations that have users
who used it.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a test scenario template based on similarity
between descriptions of different organizations. The com-
puter includes a processor, and the non-transitory computer-
readable medium stores the following program code:

Program code for monitoring users belonging to different
organizations to identify runs of test scenarios run on soft-
ware systems belonging to the different organizations.

Program code for receiving a certain description of a cer-
tain organization and descriptions of the different organiza-
tions. Optionally, the certain description comprises a field of
operation of the certain organization.

Program code for identifying, based on similarity between
the certain description and the descriptions, similar organiza-
tions that are similar to the certain organization.

Program code for identifying a run of a specific test sce-
nario that is utilized by one or more of the similar organiza-
tions.

Program code for generating the test scenario template
based on the run of the specific test scenario. Optionally, the
specific test scenario was not available in any test suite of the
certain organization prior to generating the test scenario tem-
plate.

And program code for removing from the test scenario
template proprietary data associated with at least one of the
similar organizations.

In one embodiment, the non-transitory computer-readable
medium also stores program code for customizing the test
scenario template for the certain organization.

In some embodiments, vendor-customized packaged
application modules are modules designed and developed to
include many options and possibilities in various aspects
which can be customized. During the installation and imple-
mentation at a customer, the modules may be customized.
One possibility to implement a customization to a module is
by developing additional code which is added as part of the
packaged application. Optionally, the additional code is orga-
nization-specific and/or developed by the organization.
Another possibility to implement a customization is via set-
ting some configurable option, for example by adding,

10

15

20

25

30

35

40

45

50

55

60

65

54

removing, and/or editing configuration elements belonging to
a configuration file associated with a module.

A customization of a module may change the way a busi-
ness process associated with the module works without
changing the code itself. In one example, one may configure
a module that deals with human resources of a certain orga-
nization by providing it with organization-specific list of lev-
els (titles) of the certain organization. Thus, when a user of the
certain organization runs human resources-related business
processes, the user may utilize a different list of levels than a
user of another organization utilizes, even though they both
may be running the same version of application code. In
another example, one organization may require a direct man-
ager of an employee to add a summary of an interview of a
new employee, while another organization may not have such
a requirement. Customizing an application module for the
requirement to add a summary may be accomplished by add-
ing code that requests an input of a summary after an inter-
view, and integrating the code in to a business process that
involves adding a new employee.

In one embodiment, a customization to a module may
involve adding data that a user may be required to enter when
interacting with the module. For example, a customization
may enter certain organization-specific data (e.g., name of
organization, address, account number). Thus, for example, a
user of the module would not have to enter the data when
running each test scenario. Optionally, the user may be given
an opportunity to approve and/or edit data associated with a
customization. Additionally or alternatively, a customization
to a module may involve information that is required for a test
scenario that involves the module to run smoothly. Option-
ally, without the information being provided, the test scenario
would not run smoothly (e.g., leading to errors in execution of
the test scenario). For example, for a test scenario to run
smoothly may requires a customization that provides infor-
mation such as location of resources (e.g., directories or data-
bases), and/or certificates or permissions to access certain
resources.

In one embodiments, customizations of an organization to
a module may indicate usage of the module by the organiza-
tion. It is often the case that a software system of a certain
organization may include many vendor-customized packaged
application modules (e.g., a standard collection of application
modules). However, a certain organization may not utilize all
of'the installed modules. The certain organization may utilize
other solutions instead of the modules. For example, the
certain organization may utilize SalesForce™ Customer
Relationship Management (CRM) instead of corresponding
module of SAP™ that is installed. In this case, providing a
user belonging to the certain organization test scenarios for
testing a CRM module of SAP is not beneficial.

FIG. 21 illustrates one embodiment of a computer system
configured to generate a test scenario template from data
collected from users running test scenarios to test vendor-
customized packaged application modules. The illustrated
embodiment includes at least a module analyzer 232, a com-
ponent analyzer 236, a template generator 238, and a data
cleaner 242.

The module analyzer 232 is configured to receive: a first
description 230q of a first set of vendor-customized packaged
application modules, and a second description 2305 of a
second set of vendor-customized packaged application mod-
ules. Optionally, a first organization utilizes the first set of
modules, and a second organization utilizes the second set of
modules. Optionally, the first set of modules and the second
set of modules each include at least one module. Optionally,
the second set includes at least one module that is not included

US 9,317,404 B1

55

in the first set. Optionally, the first organization and the sec-
ond organization are associated with the same field of opera-
tion. For example, both organizations may be in the travel
industry. Alternatively, the first organization and the second
organization may be associated with different fields of opera-
tion. For example, the first organization may be in the travel
industry, while the second organization may be in the banking
industry.

In one embodiment, the second organization is an organi-
zation that is most similar to the certain organization. For
example, from among a plurality of different organizations,
the second organization is the most similar to the first orga-
nization, based on one or more factors such as: field of opera-
tion, organizational hierarchy, lists of utilized modules, and/
or customizations associated with the organizations.

The first description 230q includes customizations to mod-
ules belonging to the first set, and the second description 2305
includes customizations to modules belonging to the second
set. Optionally, each of the first description 230a and the
second descriptions 2305 may include customization code,
settings to modules (e.g., configuration elements), default
values utilized by modules, and/or information required for
modules to run smoothly (e.g., resource locations, certifi-
cates, and/or permissions). Additionally or alternatively, the
first description 230a and the second description 2305 may
also include information that characterizes the first and/or
second organizations. In one example, the first description
230a and/or the second description 2305 may include lan-
guages used by users belonging to the organization, location
of the organization, size of the organization, and/or a field of
operation of the organization (e.g., insurance, defense, com-
munications). In another example, the first description 230a
and/or the second description 2305 may list modules, busi-
ness processes, transactions, and/or screens utilizes by the
first and/or second organizations. In yet another example, the
first description 230a and/or the second description 2305 may
include usage data. Optionally, the usage data may include
activity data of users of the first and/or second organizations,
runs of test scenarios associated with the first and/or second
organizations, and/or data derived from the runs.

The module analyzer 232 is also configured to identify,
based on the first description 2304 and the second description
2305, a first customization 234a to a first instance of a certain
module and a second customization 2345 to a second instance
of'the certain module. The first and second instances belong to
the first and second sets, respectively. Optionally, the first and
second instances involve essentially the same code base but
different customizations may be associated with each
instance. Optionally, the first and/or second descriptions
explicitly refer to an instance of the certain module being used
by their respective organizations; for example, the first
description 230a and/or the second description 2305 may list
the certain module as being utilized by their respective orga-
nization. Optionally, the first description 230a and/or the
second description 2305 may imply that their respective orga-
nization utilizes an instance of the certain module. For
example, the first description 230a and/or the second descrip-
tion 2305 may include runs of test scenarios from which it
may be implied that certain transactions, which involve the
certain module, were run.

The first customization 2344 and the second customization
234b selected by the module analyzer 232 are typically simi-
lar to each other. In one example, the first customization 234a
includes customization code that is similar to customization
code included in the second customization 2345. Optionally,
similarity of customization code is determined via string
comparisons and/or clustering of customization code. In

15

25

30

40

45

60

56

another example, the first customization 234a and the second
customization 2344 involve similar data that may be used to
customize the respective first and second instances of the
certain module. For example, to customize and instant of a
inventory module, both customizations provide data of a
similar types related to ordering parts for a warehouse (e.g.,
respective organization names, bank accounts, shipping
options). In yet another example, the first customization 234a
and the second customization 2345 both describe information
of their respective organizations that is required for test sce-
narios to run smoothly. For example, they describe resource
locations (for similar resources), and/or provide similar cer-
tificates of their respective organizations. In another example,
similar customizations each include at least one similar com-
ponent in common.

The component analyzer 236 is configured to identify,
based on the first customization 234a and the second customi-
zation 234b, components in the second instance that are simi-
lar to components in the first instance. Optionally, a compo-
nent of a customization of a module may involve one or more
of the following: a certain business process run on the mod-
ule, a certain transaction run on the module, a certain field on
a screen used by a certain transaction run on the module, a
certain value used by a certain transaction run on the module,
and a certain command executed when running the module.
Optionally, a first customization and a second customization
may be considered similar by virtue of at least one of: a
similar business process being described in the first and sec-
ond customizations, a similar transaction being described in
the first and second customizations, a similar field on a screen
used by a certain transaction being described in the first and
second customizations, a certain value used by a certain trans-
action being described in the first and second customizations,
and a certain command described in the first and second
customizations.

In one example, the first customization 234a and the sec-
ond customization 2345 both include a shipping address for
their respective organizations. In another example, the first
customization 234a and the second customization 2345
include code that alters behavior of a certain transaction; e.g.,
each customization alters what an instance of the certain
module does with a record of a new employee after the record
is added in the certain transaction. In yet another example, the
first customization 234a and the second customization 2345
each include certificates of their respective organizations
required by the certain module in order to access a customer
database of each organization.

The template generator 238 is configured to receive: a
specific run 239 of a test scenario run to test the second
instance, and a description of similar components that
includes an indication of at least one component of the second
instance that is similar to at least one component of the first
instance. For example, the indication of the at least one com-
ponent may be a name, an identifier, and/or a description of a
business process; a name, identifier, code, and/or description
of'acertain transaction; a description of a screen or portions of
a screen such as field names belonging to the screen; a certain
value used by a transaction; and/or a command executed
when running a transaction.

The template generator 238 is also configured to generate,
based on the specific run 239 and the description of similar
components, a test scenario template 240 for testing the first
instance of the certain module. Optionally, the template 240
may focus on portions of the specific run that relate to the at
least one component of the second instance that is similar to
at least one component of the first instance. For example, the
at least one component may be a certain transaction, and the

US 9,317,404 B1

57

template may primarily involve testing the certain transac-
tion. In another example, the at least one component may
include values utilized to run a transaction, e.g., the values
entered in a screen, and the template may include essentially
the same screen and utilize the same values as default values
for the screen. In yet another example, the at least one com-
ponent may be a certificate for accessing an external website,
and the template includes a transaction that accesses the
external website.

In one embodiment, the template generator 238 is config-
ured to select the run of a test scenario run to test the second
instance from a plurality of runs of test scenarios that were run
to test the second instance. For example, the template genera-
tor 238 may select the second run based on similarity of the
second run to the specific run 239. In another example, the
template generator 238 may select the second run based on
the fact that it involves the at least one component of the
second instance that is similar to at least one component of the
first instance, and that the second run is an instantiation of a
test scenario run by many users belonging to the second
organization.

In another embodiment, the template generator 238 is also
configured to rank popularity of runs of test scenarios, run to
test the second instance, and to select the specific run of a test
scenario run to test the second instance from popular runs of
popular test scenarios. For example, the runs may be ranked
according to popularity of the test scenarios and/or the tem-
plate of which the runs are instantiations. Optionally, the
popularity of the test scenarios and/or templates may be deter-
mined based on the number of users that ran instantiations of
the test scenarios and/or templates, and/or the number of
organizations associated with instantiations of the test sce-
narios and/or the templates. In one example, the second run is
selected from among the top 20% of most popular runs. In
another example, the second run is the most popular run that
involves the at least one component of the second instance
that is similar to at least one component of the first instance.

In one embodiment, the template generator 238 is config-
ured to receive a second run of a test scenario run to test the
second instance of the certain module. Optionally, the tem-
plate generator 238 is configured to select the second run from
among runs of test scenarios associated with the second orga-
nization. The template generator 238 is configured to gener-
ate the test scenario template 240 based on the second run (in
addition to the specific run 239). Optionally, the template 240
identifies a transaction used by the specific run and the second
run, and possible values for running the transaction. Option-
ally, at least one of the possible values for running the trans-
action is notused in any of'the specific run 239 and the second
run. Optionally, the test scenario template 240 includes a
combination of the possible values, and the combination is
not used in any of the specific run 239 and the second run.

The data cleaner 242 is configured to remove from the test
scenario template 240 proprietary data associated with the
second organization. Additionally or alternatively, the data
cleaner 242 may be configured to remove from the specific
run 239 of the test scenario proprietary data associated with
the second organization. Optionally, most output fields of the
specific run are removed, and as a result, the test scenario
template 240 does not include expected values for most test
steps.

In one embodiment, the computer system optionally
includes a customization module 244 that is configured to
customize the test scenario template by adding to the test
scenario template proprietary data relevant to the first orga-
nization. Optionally, at least some of the proprietary data is
obtained from the first description 230aq.

20

40

45

58

In another embodiment, the computer system optionally
includes a user interface 246 that is configured to suggest to a
user to run an instantiation of the template. Optionally, the
user interface 246 may initiate an instantiation of the tem-
plate. For example, the user interface 246 may present a first
screen of the customized template and prompt the user to take
a certain action to advance execution.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 21 in
different ways. For example, in some embodiments one or
more of the following may be implemented by the same
software module and/or software modules running on the
same processor: the module analyzer 232, the component
analyzer 236, the template generator 238, the data cleaner
242, the customization module 244, and the user interface
246. Additionally, one or more of the aforementioned com-
ponents may be implemented on a remote server, such as a
cloud-based server.

In one example, the customization module 244 and/or the
data cleaner 242 are both implemented as part of the template
generator 238. In another example, the component analyzer
236 and the module analyzer 232 are both implemented by the
same software module.

In one embodiment, the test scenario template undergoes
customization by the customization module 244 prior to
removal of proprietary data from the template by the data
cleaner 242. In another embodiment, the order is reversed:
proprietary data is removed from the template by the data
cleaner 242, and then the template is customized by the cus-
tomization module 244. In still another embodiment, custom-
izing the template and removing proprietary data from it are
performed by the same software module. Optionally, the soft-
ware module utilizes the first description 230a and/or the
second description 2305 to determine which proprietary data
needs to be removed from the template 240, and which pro-
prietary data should be added to the template 240 when cus-
tomizing it.

FIG. 22 illustrates similar modules detected based on
descriptions of two organizations. In the illustration, each
organization is associated with an ERP that includes vendor-
customized packaged application modules (a first organiza-
tion is associated with ERP 261 and a second organization is
associated with ERP 265). Each ERP is customized by orga-
nization-specific customization code (the ERP of the first
organization is customized by code 263 and the second ERP
is customized by code 267). The description of the first ERP
indicates which modules it includes; among the modules are
finance 262A, human resources 262B, manufacture 262C,
and customer service 262D modules. The description of the
second ERP indicates which modules it includes; among
them are human resources 266A, legal 266B, customer ser-
vice 266C, and design 266D. Based on the first and second
descriptions, and the customization code associated with the
two organizations, it is determined that modules 262B and
266A are similar instances of a human resources module. In
addition, it is determined that modules 262D and 266C are
similar instances of a customer service module. Thus, a run of
atest scenario of a user of the second organization that tests at
least one of the modules 266A and 266C, may be utilized to
generate a template for the first organization, that tests mod-
ule 262B and/or 262D.

FIG. 23 illustrates one embodiment of a computer imple-
mented method for generating a test scenario template from
data collected from users running test scenarios to test ven-
dor-customized packaged application modules. The illus-
trated embodiment includes the following steps:

US 9,317,404 B1

59

In step 250, receiving a first description of a first set of
instances vendor-customized packaged application modules.
A first organization uses the first set of modules and the first
description includes customizations to modules from the first
set.

In step 251, receiving a second description of a second set
of instances vendor-customized packaged application mod-
ules. A second organization uses the second set of modules
and the second description includes customizations to mod-
ules from the second set. Optionally, the second set includes
at least one module that is not included in the first set. Option-
ally, the first organization and the second organization are
associated with different fields of operation. Alternatively, the
first organization and the second organization may be asso-
ciated with a same field of operation.

In one embodiment, steps 250 and 251 are performed
simultaneously. For example, the first and second descrip-
tions are received in a same message (e.g., the same file).

In step 252, identifying, based on the first and second
descriptions, a first customization to a first instance of a
certain module and a second customization to a second
instance of the certain module. Optionally, the first and sec-
ond instances belong to the first and second sets, respectively.
In addition, the first customization is similar to the second
customization.

In step 253, identifying, based on the first and second
customizations, components in the second instance that are
similar to components in the first instance. Optionally, a com-
ponent of a customization of a module involves one or more
of the following: a certain business process run on the mod-
ule, a certain transaction run on the module, a certain field on
a screen used by a certain transaction run on the module, a
certain value used by a certain transaction run on the module,
and a certain command executed when running the module.

In step 254, receiving a specific run of a test scenario run to
test the second instance, and a description of similar compo-
nents that includes an indication of at least one component of
the second instance that is similar to at least one component of
the first instance.

In step 255, generating, based on the specific run and the
description of similar components, a test scenario template
for testing the first instance.

And in step 256, removing from the test scenario template
proprietary data associated with the second organization.

In one embodiment, generating the template in step 255
also involves selecting the specific run of a test scenario run to
test the second instance from runs of test scenarios that were
run to test the second instance. Alternatively or additionally,
generating the template in step 255 may involve ranking
popularity of runs of test scenarios, run to test the second
instance, and selecting the specific run of a test scenario runto
test the second instance from popular runs of test scenarios.

In one embodiment, the computer implemented method
illustrated in FIG. 23 includes an optional step of receiving a
second run of a test scenario run on the second instance of the
certain module; generating the test scenario template is based
both on the specific run and the second run. As a result, the test
scenario template identifies a transaction used by the specific
run and the second run, and possible values for running the
transaction. Optionally, at least one of the possible values for
running the transaction is not used in any of the specific run
and the second run. Optionally, the test scenario template
includes a combination of the possible values, and the com-
bination is not used in any of the specific run and the second
run.

In one embodiment, the computer implemented method
illustrated in FIG. 23 includes an optional step of removing

15

20

25

30

35

40

45

55

65

60

proprietary data from the specific run; most output fields of
the specific run are removed, and as a result, the test scenario
template does not include expected values for most test steps.

In one embodiment, the computer implemented method
includes optional step 257 which involves customizing the
test scenario template for the first organization by adding to
the test scenario template proprietary data relevant to the first
organization. Optionally, customizing the test scenario tem-
plate for the first organization involves guiding a user to
provide proprietary data relevant to the first organization.
Optionally, guiding the user to provide proprietary data
involves: providing to the user the test scenario template from
which proprietary data associated with the second organiza-
tion was removed, prompting the user to provide missing
values, and recording a response of the user. Optionally, cus-
tomizing the test scenario template for the first organization
may involve adding the response of the user to the test sce-
nario template from which proprietary data associated with
the first organization was removed.

Inone embodiment, guiding the user to provide proprietary
data may involve semiautomatic execution of an instantiation
of the test scenario template from which proprietary data
associated with the second organization was removed. Addi-
tionally or alternatively, proprietary data of the first organi-
zation may be removed from the template. Additionally, cus-
tomizing the test scenario template for the first organization
may involve marking locations of values that were removed
from the test scenario template; the guiding of the user to
provide the proprietary data may involve directing the user’s
attention to the marked locations.

In one embodiment, the computer implemented method
illustrated in FIG. 23 includes an optional step of receiving
proprietary data associated with the first organization. Addi-
tionally, customizing the test scenario template for the first
may involve adding to the test scenario template at least some
of'the received proprietary data associated with the first orga-
nization. Optionally, the received proprietary data associated
with the first organization is generated from a previously
recorded run of a test scenario associated with the first orga-
nization. Optionally, the received proprietary data associated
with the first organization is generated by parsing manual test
scenarios associated with the first organization. Optionally,
the received proprietary data associated with the first organi-
zation is generated from analysis of a database of the software
system associated with the first organization.

In one embodiment, the computer implemented method
includes optional step 258 involving suggesting to a user to
run an instantiation of the test scenario template.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to generate a test scenario template from data collected from
users running test scenarios to test vendor-customized pack-
aged application modules. The computer includes a proces-
sor, and the non-transitory computer-readable medium stores
the following program code:

Program code for receiving a first description of a first set
of instances vendor-customized packaged application mod-
ules. A first organization uses the first set and the first descrip-
tion comprises customizations to modules from the first set.

Program code for receiving a second description of a sec-
ond set of instances vendor-customized packaged application
modules. A second organization uses the second set and the
second description comprises customizations to modules
from the second set. Optionally, the second set includes at
least one module that is not included in the first set.

Program code for identifying, based on the first and second
descriptions, a first customization to a first instance of a

US 9,317,404 B1

61

certain module and a second customization to a second
instance of the certain module; the first and second instances
belongs to the first and second sets, respectively. Additionally,
the first customization is similar to the second customization;

Program code for identifying, based on the first and second
customizations, components in the second instance that are
similar to components in the first instance. Optionally, a com-
ponent of a customization of a module involves one or more
of the following: a certain business process run on the mod-
ule, a certain transaction run on the module, a certain field on
a screen used by a certain transaction run on the module, a
certain value used by a certain transaction run on the module,
and a certain command executed when running the module.

Program code for receiving a specific run of a test scenario
run to test the second instance, and a description of similar
components comprising an indication of at least one compo-
nent of the second instance that is similar to at least one
component of the first instance.

Program code for generating, based on the specific run and
the description of similar components, a test scenario tem-
plate for testing the first instance.

And program code for removing from the test scenario
template proprietary data associated with the second organi-
zation.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for r ranking popu-
larity of runs of test scenarios run to test the second instance
of the certain module, and selecting the specific run from the
most popular results.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for customizing the
test scenario template for the first organization.

FIG. 24 and FIG. 25 illustrate embodiments of a computer
system configured to rank similar runs of test scenarios based
on unessential test steps in the runs. The illustrated embodi-
ments include at least a test identifier 904, a clustering module
906, a cluster selector 908, a test step analyzer 910, a test step
verifier 912, and a ranking module 914.

The test identifier 904 is configured to identify runs 905 of
test scenarios run by users on software systems that belong to
different organizations. Optionally, the users belong to dif-
ferent organizations. Optionally, the runs 905 are identified,
at least in part, from activity data 903. In one example, the
runs 905 include at least a first run that was run by a first user
belonging to a first organization and a second run that was run
by a second user belonging to a second organization, and the
first organization is not the second organization and the first
user is not the second user.

In one embodiment, a test scenario may be characterized as
including one or more test steps; running the test scenario
involves execution of the one or more test steps, and a run of
the test scenario may describe the one or more test steps.
Optionally, the test identifier 904 determines for at least some
of'the runs 905, at least some of the test steps that are executed
while running the test scenarios. Optionally, test steps may
identified by a name, code, description, and/or serial number.
Optionally, each run of the at least some runs, is associated
with at least one subset of test steps that were executed in the
run.

The clustering module 906 is configured to cluster the runs
905 of the test scenarios to clusters of similar runs of test
scenarios. Optionally, the clustering module 906 is config-
ured to process one or more of the following logged activities:
a list of users who ran the test scenarios, an analysis of access
to a database, messages returned from executed transactions,
values returned by fields, and procedures utilized by a test
scenario. Optionally, the clusters may be of various sizes, and

10

15

20

25

30

35

40

45

50

55

60

65

62

include runs of various users belonging to different organiza-
tions. Optionally, the clustering module 906 performs pro-
cessing of the runs 905 prior to clustering; for example, it
extracts field values from screens in runs. Optionally, the
clustering module 906 may receive the runs 905 after they
undergo processing. For example, the runs may be repre-
sented as vectors of features on which a clustering algorithm
utilized by the clustering module 906 may operate.

The cluster selector 908 is configured to select from the
clusters a certain cluster. The selection of a cluster may be
done according to various parameters, such the cluster’s size,
the number organizations associated with runs belonging to
the cluster, and/or attributes of transactions executed in the
runs belonging to the cluster. Optionally, the more runs
belong to a cluster and/or the larger the number of organiza-
tions associated with runs that belong to the cluster, the like-
lier the cluster selector 908 is to select the cluster to be the
certain cluster.

In one embodiment, the certain cluster selected by the
cluster selector 908 includes a first run of a first test scenario
and a second run of a second test scenario; the first run is
associated with a first organization belonging to the different
organizations and the second run is associated with a second
organization belonging to the different organizations. Addi-
tionally, the first run is not identical to the second run, and the
first organization is not the second organization. In this
embodiment, the fact that the selected cluster includes runs
associated from different organizations may be indicative of
the fact that the runs test business processes and/or transac-
tions that are likely also used by organizations other than the
first and second organizations.

In another embodiment, the cluster selector 908 receives a
profile of a certain user and/or a certain organization, and
selects the certain cluster based on the profile. Optionally, the
profile may indicate usage data of the certain user and/or the
certain organization. For example, the profile may indicate
certain business processes, transactions, screens, and/or val-
ues that appear runs of test scenarios run by the certain user
and/or associated with the certain organization. The cluster
selector 908 may then select the certain cluster such that the
cluster includes runs related to the certain business processes,
transactions, screens, and/or values.

The test step analyzer 910 is configured to identify occur-
rences of potentially unessential test steps in the similar runs
of test scenarios. The test step analyzer 910 may base its
analysis on data included in the similar runs of test scenarios,
such as data related to execution of transactions including
input/output values of business processes, screens, and/or
transactions. The test step analyzer 910 may also utilize addi-
tional resources such as looking up test steps (e.g., according
to an identifier, command code) in a database to determine
whether they are potentially unessential.

Note, that in this embodiment, a test step may be consid-
ered to be a potentially unessential test step if analysis of arun
of a test scenario indicates that it is likely to be unessential;
additional evidence may be required in order for the test step
to be considered a verified unessential test step.

In one embodiment, a potentially unessential test step may
be characterized by the fact that when a potentially unessen-
tial test step is removed from a certain test scenario, that does
not affect main outcome of running the certain test scenario.
For example, if a specific test step in a test scenario requires
input of certain data that is just stored and not utilized
throughout the test, then skipping the specific test step when
running the test scenario is not likely to change anything in
the outcome. This fact may indicate that the specific test step
is potentially unessential.

US 9,317,404 B1

63

In another embodiment, the test step analyzer 910 is con-
figured to identify a screen, which does not return a value
usable for its calling screen, as an unessential screen that
generates a potentially unessential test step. For example, a
certain test step may involve entering values into a certain
screen. Filling values into the certain screen does not result in
the execution of a business process that affects the system
(e.g., a read and/or write to a database), but rather just in the
return of a generic code. The generic code is not utilized by
the screen that came before (called) the certain screen, and is
essentially discarded. In this example, the certain screen does
not contribute much to the testing of the system and is thus a
potentially unessential screen. The certain test step that
involves filling in data to the certain screen can thus be con-
sidered a potentially unessential test step, since it does not do
something useful for testing the system.

In yet another embodiment, the test step analyzer 910 is
further configured to identify a test step that generates an error
message as a potentially unessential test step. For example, a
screen that returns an error message such as invalid zip code
entered may correspond to an unessential step (entering the
zip code in the screen may be the test step). In this example,
the error code may have emerged when attempting to switch
between screens, in which case, the entered data is verified by
the system. After receiving the error message, it may be
assumed that a following corrective step is the right one (e.g.,
filling in a new and correctly formatted zip code), and thus the
previous step (that is corrected by the corrective step) is
potentially unessential.

In some embodiments, relying on analysis of test steps to
determine whether they are unessential may not be sufficient.
There may be considerations that were not taken in to account
in the analysis, and thus even though a test step looks like it is
unessential (based on the analysis), it is in fact not unessen-
tial. Therefore, test steps designated the test step analyzer 910
are labeled only “potentially unessential test steps”. The fact
that a certain potentially unessential test step is widely per-
formed may serve as evidence that its label as “potentially
unessential” may be a mistake, and in fact that analysis of the
certain test step may be wrong. Optionally, evidence of a test
step being widely performed may involve observing occur-
rences of the certain test step in numerous runs of test sce-
narios, by multiple users, and/or by user belonging to differ-
ent organizations.

Herein, an occurrence of a certain test step in a run of a test
scenario refers to there being in the run of the test scenario
evidencethat the certain test step was performed when the test
scenario was executed (as recorded in the run). Optionally,
the evidence may be direct (e.g., by specifically mentioning
execution of commands from the test step) and/or indirect
(e.g., by including in the run a value returned by the certain
test step).

In one embodiment, the test step verifier 912 determines
how widespread is the use of a certain test step based on runs
of test scenarios of users from different organizations. The
test step verifier 912 is configured to count, for each poten-
tially unessential test step, number of different users that ran
a test scenario that includes the potentially unessential test
step. The test step verifier 912 is also configured to label a
potentially unessential test step as a verified unessential test
step when its corresponding number of different users is
below a predetermined threshold. Optionally, the predeter-
mined threshold is proportional to number of users that ran
test scenarios with runs in the certain cluster; for example, the
predetermined threshold equals 5% of the number of users
belonging to the different organizations that ran runs that
belong to the certain cluster. Thus, the larger the number of

25

40

45

50

55

64

users that ran test scenarios with runs in the certain cluster, the
higher the predetermined threshold. In another example, the
predetermined threshold is fixed and set to 5 users.

In one embodiment, the test step verifier 912 determines
how widespread is the use of a certain test step based on runs
of test scenarios associated with different organizations.
Optionally, the test step verifier 912 is configured to count, for
each potentially unessential test step, the number of different
organizations that have a user that belongs to them that ran a
test scenario that includes the potentially unessential test step.
The test step verifier 912 is also configured to label a poten-
tially unessential test step as a verified unessential test step
when its corresponding number of different organizations is
below a predetermined threshold. Optionally, the predeter-
mined threshold is proportional to number of the different
organizations; for example, the predetermined threshold cor-
responds to 10% of the number of different organizations.
Thus, the larger the number of different organizations, the
higher the predetermined threshold. In another example, the
predetermined threshold is fixed. For example, the predeter-
mined threshold is two organizations.

In yet another embodiment, the test step verifier 912 deter-
mines how widespread is the use of a certain test step based on
runs of test scenarios of users from different organizations.
The test step verifier 912 is configured to count, for each
potentially unessential test step, a first number of different
users that ran a test scenario that includes the potentially
unessential test step, and a second number of different orga-
nizations that have a user that belongs to them that ran a test
scenario that includes the potentially unessential test step.
The test step verifier 912 is also configured to label a poten-
tially unessential test step as a verified unessential test step
when its corresponding first number of different users is
above a first predetermined threshold and its corresponding
second number of different organizations is above a second
predetermined threshold.

Optionally, the first predetermined threshold is propor-
tional to number of users that ran test scenarios with runs that
belong the certain cluster; for example, the first predeter-
mined threshold may be set at 10% of the users that have runs
in the certain cluster. Alternatively, the first predetermined
threshold may be fixed; for example, the first predetermined
threshold may be set to be 7. Optionally, the second prede-
termined threshold is proportional to number of the different
organizations; for example, the second predetermined is set to
5% of the number of different organizations. Alternatively,
the second predetermined threshold is fixed; for example, the
second predetermined threshold is set to be 3.

The ranking module 914 is configured to rank the runs of
the test scenarios belonging to the certain cluster based on
number of occurrences of verified unessential test steps in the
runs, such that a first run, having more occurrences of verified
unessential test steps than a second run, is ranked lower than
the second run.

As used in here, the verb rank and its derivatives may mean
to either induce and order according to some score orto assign
a score from which an ordering may be induced. For example,
ranking the runs of test scenarios belonging to the certain
cluster based on the number of occurrences of verified unes-
sential steps can mean that each run is assigned a score that is
afunction ofthe number of verified unessential steps (e.g., the
score may be given according to the identity function). This
score can then be used to order the runs, so a first run with a
lower score than a second run comes before the second run
(and is thus ranked lower). Alternatively, ranking the runs of
test scenarios belonging to the certain cluster based on the
number of occurrences of verified unessential steps can mean

US 9,317,404 B1

65

that the runs are arranged in an increasing order of their
number of verified unessential steps (without specifically
assigning each an explicit function-generated score).

In one embodiment, the ranking module 914 generates
ranked runs 916 of test scenarios. For example, each of the
ranked runs 916 may have an associated rank score attached
to it; such that the higher the rank score, the higher the run is
ranked. Alternatively or additionally, the ranked runs 916
may have an order assigned to them, based on the ranking. For
example, a first run that is ranked higher than a second run
may appear ahead of the second run according to the order.
Optionally, the ranked runs 916 may include ranking infor-
mation that may be used to associate runs with their corre-
sponding ranks (e.g., the ranking information may include a
table that lists run identifiers and their corresponding ranks).
Optionally, the ranked runs 916 may include runs of the test
scenarios belonging to the certain cluster augmented by the
ranking information. In one example, augmenting runs
involves adding a score (e.g., a rank score) to the runs. In
another example, augmenting runs involves assigning an
order to the runs, such that, based on the order, at least one run
appears ahead of another run.

In one embodiment, the ranking module 914 ranks runs
belonging to the certain cluster, at least in part, according to a
number of users and/or organizations that are associated with
test scenarios and/or templates of which the runs are instan-
tiations. A user may be considered associated with a test
scenario and/or a template if the user ran an instantiation of
the test scenario and/or the template. Additionally, an orga-
nization may be considered associated with a test scenario
and/or a template if a user belonging to the organization is
associated with the test scenario and/or the template. Option-
ally, the larger the number of users and/or organizations asso-
ciated with a test scenario and/or a template of which a run of
a test scenario is an instantiation, the higher the run is ranked
by the ranking module.

In one embodiment, the computer system may optionally
include a monitoring module 902 that is configured to moni-
tor the users 900 belonging to the different organizations and
to provide the activity data 903 obtained from monitoring the
users 900 to the test identifier 904.

In one embodiment, the computer system may optionally
include a template generator 918 that is configured to gener-
ate the test scenario template based on one or more of the
ranked runs 916 of test scenarios belonging to the certain
cluster and the ranking of the runs. For example, the template
generator 918 may select a run of a test scenario belonging to
the certain cluster that is a highest ranked run, and generate
the template based on the selected run.

In one embodiment, the template generator 918 is config-
ured to generate the test scenario template based on a first and
a second run belonging to the ranked runs 916. Optionally, the
first run is associated with a first organization and the second
run is associated with a second organization that is not the first
organization. Optionally, the template identifies a transaction
used in the first and second runs, and possible values for
running the transaction. Optionally, at least one of the pos-
sible values for running the transaction does not appear in
each of the first and second runs. Optionally, the test scenario
template includes a combination of the possible values, and
the combination does not appear in any of the first and second
runs.

In one embodiment, the computer system may optionally
include a user interface 924 configured to suggest to a user to
run an instantiation of the test scenario template. Optionally,
the user interface 924 may initiate the instantiation of the
manipulated test scenario template. For example, the user

10

15

20

25

30

35

40

45

50

55

60

65

66

interface 924 may present a first screen belonging to the test
scenario template and prompt a user to take a certain action to
advance execution.

In one embodiment, the computer system optionally
includes a customization module 922. The customization
module 922 is configured to customize the test scenario tem-
plate for a user by adding to the test scenario template pro-
prietary data relevant to the user. Optionally, the customiza-
tion module 922 receives a profile of the user and customizes
the template based on the profile.

In one embodiment, the computer system optionally
includes a data cleaner 920 that is configured to remove from
the test scenario template proprietary data associated with at
least one of the different organizations. Optionally, the data
cleaner is configured to remove proprietary data from the one
or more ranked runs based upon which the template was
generated. Optionally, most output fields of the one or more
runs are removed by the data cleaner 920, and as a result, the
test scenario template does not include expected values for
most test steps.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 24
and/or FIG. 25 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
902, the test identifier 904, the clustering module 906, the
cluster selector 908, the test step analyzer 910, the test step
verifier 912, the ranking module 914, the template generator
918, the data cleaner 920, the customization module 922, and
the user interface 924. Additionally, one or more of the afore-
mentioned components may be implemented on a remote
server, such as a cloud-based server.

In one example, the customization module 922 and/or the
data cleaner 920 are both implemented as part of the template
generator 918. In another example, the clustering module 906
and the cluster selector 908 are both implemented by the same
software module. In yet another example, the test step ana-
lyzer 910 and the test step verifier 912 are both implemented
by the same software module.

In one embodiment, the test scenario template may
undergo customization by the customization module 922
prior to removal of proprietary data from the template by the
data cleaner 920. In another embodiment, the order is
reversed: proprietary data is removed from the template by
the data cleaner 920, and then the template is customized by
the customization module 922. In still another embodiment,
customizing the template and removing proprietary data from
it are performed by the same software module.

In another embodiment, the clustering module 906, cluster
selector 908, test step analyzer 910, test step verifier 912,
and/or the ranking module 914 are implemented as a cloud-
based service that receives runs of test scenarios 905 identi-
fied from the activity data 903 of the users 900 belonging to
the different organizations, and ranks at least some of the runs
905. Optionally, the template generator 918, the test identified
904, and/or the data cleaner 920 may also may also be part of
the cloud-based service.

FIG. 26 illustrates one embodiment of a computer imple-
mented method for ranking similar runs of test scenarios
based on unessential test steps in the runs. The illustrated
embodiment includes the following steps:

In step 280, identifying runs of test scenarios run by users
on software systems that belong to different organizations. A
test scenario includes one or more test steps.

In step 281, clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios.

US 9,317,404 B1

67

In step 282, selecting from the clusters a certain cluster that
includes similar runs of test scenarios associated with at least
two different organizations.

In step 283, identifying occurrences of potentially unes-
sential test steps in the similar runs of test scenarios. Option-
ally, identifying an occurrence of an unessential test step in a
run of a test scenario is done by analyzing the run in order to
determine whether to characterize a test step executed in the
run of the test scenario as being a potentially unessential test
step. Optionally, there may different ways to characterize a
potentially unessential test step. In one example, when a
potentially unessential test step is removed from a certain test
scenario, that does not affect main outcome of running the
certain test scenario. In another example, a screen, which
does not return a value usable for its calling screen, may be an
unessential screen that generates a potentially unessential test
step. In yet another example, a test step that generates an error
message may be characterized as a potentially unessential test
step. In one embodiment, evidence of one or more of the
aforementioned characterizations of a potentially unessential
are obtained by analyzing runs of test scenarios belonging to
the certain cluster.

In step 284, counting, for each potentially unessential test
step, number of different users that ran a test scenario that
comprises the potentially unessential test step.

In step 285, labeling some of the potentially unessential
test steps as verified unessential test steps. Optionally, a
potentially unessential test step is labeled a verified unessen-
tial test step when its corresponding number of different users
is below a predetermined threshold. Optionally, the predeter-
mined threshold is proportional to the number of various
users.

And in step 286, ranking the runs of the test scenarios
belonging to the certain cluster based on number of occur-
rences of verified unessential test steps in the runs, such that
a first run, having more verified occurrences of unessential
test steps than a second run, is ranked lower than the second
run.

In one embodiment, the counting of the number of users in
step 284 may be done in order to provide additional evidence
that the pattern of usage by users from different organizations
supports the fact that indeed certain test steps are unessential.
If few users actually utilize a certain potentially unessential
test step (e.g., the number of user is below the predetermined
threshold), then this may be evidence that the certain poten-
tially unessential test step is indeed unessential; thus it is
labeled a “verified unessential test step”. However, had there
been a large number of users (above the predetermined
threshold), then this may be evidence that the test step serves
a purpose, and despite being identified as potentially unes-
sential in step 283, it is in fact not unessential.

In another embodiment, a potentially unessential test step
may be verified by determining a number of organizations
with associated runs that have occurrences of the potentially
unessential test step. If the number of organizations is below
apredetermined threshold, this may verify thatindeed the test
step is unessential (the low usage may be evidence of that).
Optionally, the predetermined threshold may be proportional
to the number of organizations associated with runs in the
certain cluster (e.g., the higher the number organizations with
runs in the certain cluster, the higher the predetermined
threshold).

In yet another embodiment, a potentially unessential test
step may be verified by determining both a first number of
users that ran test scenarios with the unessential test step and
a second number of organizations that are associated with
runs that include occurrences of the potentially unessential

10

15

20

25

30

35

40

45

50

55

60

65

68

test step. If both the first number exceeds a first predetermined
threshold, and the second number exceeds a second predeter-
mined threshold, the potentially unessential test step may be
not be considered a verified unessential test step. In this
example, if one of the first predetermined threshold and sec-
ond predetermined thresholds are not exceeded, the poten-
tially unessential test step in considered to be a verified unes-
sential test step.

In one embodiment, the computer implemented method
may include optional step 287 which involves generating a
test scenario template representing the certain cluster based
on one or more runs of test scenarios belonging to the certain
cluster and ranking of at least some of the runs of test sce-
narios belonging to the certain cluster. Optionally, at least one
of the highest ranked runs of the test scenarios belonging to
the certain cluster is utilized for generating a test scenario
template for the runs of the test scenarios belonging to the
certain cluster. Optionally, generating the test scenario tem-
plate representing the certain cluster is based on a highest
ranked run of a test scenario belonging to the certain cluster.

In one embodiment, the computer implemented method
illustrated in FIG. 26 may include an optional step of record-
ing a user while running a certain test scenario, identifying
that the certain test scenario is similar to the test scenario
template, and suggesting the user to run the generated test
scenario template.

In another embodiment, the computer implemented
method illustrated in FIG. 26 may include an optional step of
selecting a value from the test scenario template, and remov-
ing the selected value from the test scenario template if the
selected value appears in less than a first predetermined num-
ber of the runs of test scenarios in the certain cluster or the
selected value appears in runs of test scenarios in the selected
cluster that are associated with less than a second predeter-
mined number of different organizations. In this embodiment,
both the first predetermined number and the second predeter-
mined number are greater than one.

In yet another embodiment, the computer implemented
method illustrated in FIG. 26 may include an optional step of
involving selecting a value from a run of a test scenario
belonging to the certain cluster, testing whether the value
appears in at least a first predetermined number of the runs in
the certain cluster. Following that, testing whether the value
appears in runs in the certain cluster that are associated with
at least a second predetermined number of different organi-
zations. If both conditions are positive, enabling the test sce-
nario template to utilize the selected value. Optionally, if at
least one of the aforementioned conditions is negative, he
computer implemented method illustrated in FIG. 26 may
include an optional step involving not enabling the test sce-
nario template to utilize the selected value.

In one embodiment, the computer implemented method
includes optional step 288 which involves customizing the
test scenario template for a user by adding to the test scenario
template proprietary data relevant to the user.

In one embodiment, the computer implemented method
may include optional step 289 which involves suggesting to a
user to run an instantiation of the customized test scenario
template. Optionally, the user interface 278 is utilized to
suggest to the user to run the instantiation of the template.
Optionally, the template is customized prior to suggesting to
the user.

In one embodiment, the computer implemented method
may include optional step 279, which involves monitoring the
users and providing data obtained from the monitoring for use
in the identifying of the runs of test scenarios.

US 9,317,404 B1

69

In one embodiment, the computer implemented method
illustrated in FIG. 26 optionally includes a step of removing
from the test scenario template proprietary data associated
with at least one of the different organizations. Additionally
or alternatively, the computer implemented method illus-
trated in FIG. 26 may optionally include a step of removing
proprietary data associated with at least one of the different
organizations from one or more runs belonging to the certain
cluster.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to rank similar runs of test scenarios based on unessential test
steps in the runs. The computer includes a processor, and the
non-transitory computer-readable medium stores the follow-
ing program code:

Program code for identifying runs of test scenarios run by
users on software systems that belong to different organiza-
tions. Optionally, a test scenario comprises one or more test
steps.

Program code for clustering the runs of the test scenarios to
clusters that include similar runs of test scenarios.

Program code for selecting from the clusters a certain
cluster that includes similar runs of test scenarios associated
with at least two different organizations.

Program code for identifying occurrences of potentially
unessential test steps in the similar runs of test scenarios.
Optionally, a potentially unessential test step may be charac-
terize by the fact that removing the potentially unessential test
step from a certain test scenario does not affect a main out-
come of running the certain test scenario.

Program code for counting, for each potentially unessen-
tial test step, number of different users that ran a test scenario
that includes the potentially unessential test step.

Program code for labeling some of the potentially unes-
sential test steps as verified unessential test steps. Optionally,
apotentially unessential test step may be labeled as a verified
unessential test step when its corresponding number of dif-
ferent users is below a predetermined threshold.

And program code for ranking the runs of the test scenarios
belonging to the certain cluster based on number of occur-
rences of verified unessential test steps in the runs, such that
a first run, having more verified occurrences of unessential
test steps than a second run, is ranked lower than the second
run.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring users
belonging to different organizations to identify runs of test
scenarios run on software systems belonging to the different
organizations.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for identifying a
screen, which does not return a value usable for its calling
screen, as an unessential screen that generates unessential test
steps.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for utilizing at least
one of the highest ranked recorded test scenarios for gener-
ating a test scenario template representing the certain cluster.

FIG. 27 and FIG. 28 illustrate embodiments of a computer
system configured to rank runs of test scenarios belonging to
a cluster. The illustrated embodiments include at least a test
identifier 934, a first processor 936, a clustering module 940,
a second processor 938, and a ranking module 944. Option-
ally, the first processor 291 and the second processor 294 are
the same processor.

The test identifier 934 is configured to identify runs of test
scenarios run by users belonging to different organizations on

10

15

20

25

30

35

40

45

50

55

60

65

70

software systems that belong to the different organizations.
Optionally, the runs are identified based on activity data 933
obtained from monitoring the users. Optionally, each test
scenario involves executing at least one transaction, and each
transaction is instantiated from a transaction type.

Herein, by stating that a transaction is instantiated from a
certain transaction type or that the transaction is an instantia-
tion of a certain transaction type, it is meant that the transac-
tion may be classified as being of the certain transaction type.
All transactions that are instantiations of the same transaction
type are similar. For example, transactions that are instantia-
tions of the same transaction type may perform similar
actions, contain similar code, and/or utilize similar values.
Optionally, where clear from the context, a transaction type
may be referred to as a “transaction”.

In one example, a transaction type involves accepting a
customer order. The transaction type defines a certain screen
with fields relevant to a customer order (e.g., customer
details, product details, and/or payment method). After
details of a new customer order are entered, the system may
processes the order, e.g., by checking whether entered details
is consistent and then forwarding the order to the warehouse.
In this example, each time a user enters a new customer order
and the system processes, that may be considered an instan-
tiation of the “accepting a customer order” transaction type.

In another example, a transaction type involves calculating
salary for an employee. The transaction type may have a
screen that requires entry of worker details (e.g., worker ID
and number of hours worked in the past month). Each calcu-
lation of a salary for a different employee may be considered
an instantiation of a “salary calculation” transaction type.
Similarly, calculating salaries in a different company on a
similar system (which may be customized differently), using
a similar screen may also be considered an instantiation of the
same “salary calculation” transaction type.

The first processor 936 is configured to receive a selection
of a certain transaction type, and to calculate, based on the
runs of the test scenarios, a first number of different organi-
zations associated with users that ran test scenarios that
involve executing a transaction instantiated from the certain
transaction type.

In one embodiment, the first processor 936 analyzes the
runs of test scenarios and searches for information identifying
which transactions are executed in each run. For each identi-
fied transaction in a certain run of a test scenario, the first
processor 936 determines whether the transaction is an
instantiation of the certain transaction type. If it is, the first
processor 936 takes notice of an organization associated the
certain run of the test scenario. For example, the first proces-
sor 936 determines which user ran the certain run and/or to
what organization the user who ran the certain run belongs.
The first processor 936 may add the organization to a list of
organizations that are associated with runs that involve
executing a transaction that is an instantiation of the certain
transaction type. Finally, the first processor 936 may deter-
mine the number of different organizations that appear in the
list. This number may be used as the first number of different
organizations associated with users that ran test scenarios that
involve executing a transaction instantiated from the certain
transaction type.

In another embodiment, the selection of the certain trans-
action type is done, at least in part, according to a profile of a
user and/or a certain organization. Optionally, the profile
includes information regarding transactions frequently
executed by the user and/or users belonging to the certain
organization.

US 9,317,404 B1

71

The clustering module 940 is configured to cluster the runs
of test scenarios to clusters that include similar runs of test
scenarios. Optionally, the clustering module 940 provides the
second processor 938 with runs of test scenarios belonging to
the certain cluster. For example, after receiving a request for
the certain cluster, the clustering module 940 provides the
runs of test scenarios belonging to the certain cluster. Addi-
tionally or alternatively, the clustering module 940 may pro-
vide the second processor 938 with indications identifying
runs belonging to the certain cluster (e.g., the indications may
be unique identifiers such as database entry numbers or file
paths).

The second processor 938 is configured to receive a selec-
tion of a certain cluster, selected from among the clusters, and
to calculate, based on runs of the test scenarios belonging to
the certain cluster, a second number of different organizations
associated with users that ran test scenarios involving execu-
tion of a transaction instantiated from the certain transaction
type.

In one embodiment, the second processor 938 analyzes the
runs of test scenarios belonging to the certain cluster and
searches for information identifying which transactions are
executed in each run. For each identified transaction in a
certain run of a test scenario belonging to the certain cluster,
the second processor 938 determines whether the transaction
is an instantiation of the certain transaction type. If it is, the
second processor 938 takes notice of an organization associ-
ated with the certain run of the test scenario belonging to the
certain cluster. For example, the second processor 938 deter-
mines which user generated the certain run and/or to what
organization the user who generated the certain run belongs.
The second processor 938 may add the organization to a list of
organizations that are associated with runs belonging to the
certain cluster that involve executing a transaction that is an
instantiation of the certain transaction type. Finally, the sec-
ond processor 938 determines the number of different orga-
nizations that appear in the list. This number may be used as
the second number of different organizations associated with
users that ran test scenarios that involve executing a transac-
tion instantiated from the certain transaction type.

The ranking module 944 is configured to rank runs of test
scenarios belonging to the certain cluster according to a func-
tion of the first number and the second number. Optionally,
the function is a monotonic increasing function, i.e., increas-
ing the value of the first number and/or increasing the value of
the second number increases the value returned by the func-
tion (and according to which the ranking is performed). In one
example, the function is the sum of the first and second
numbers. In another example, the function gives higher
weight to the second number than it does to the first number
(e.g., the function ranks according to the sum of the first
number and three times the second number).

In some embodiments, various weights in the function for
the first and second numbers may reflect different test strat-
egies that may be used when considering which test scenarios
to run. For example, increasing the weight of the first number
relative to the second, may be indicative of a global test-
strategy that favors testing transactions that are generally
used by many organizations (and not focusing on transactions
that are prevalent in the certain cluster). However, increasing
the weight of the second number, with respect to the first
number, may be indicative of a cluster-specific test strategy,
which focuses on transactions that are prevalent in runs in the
certain cluster.

In one embodiment, the function ofthe first number and the
second number is a monotonic increasing function. Thus,
increasing the first number and the second number increases

30

40

45

72

the value of the function of the first number and the second
number. Additionally, increasing the first number while the
second number remains the same, also increases the value of
the function of the first number and the second number. Simi-
larly, increasing the second number while the first number
remains the same, also increases the value of the function of
the first number and the second number. In one example, a
monotonic increasing function of the first number and the
second number computes the sum of the first number and the
second number. In another example, a monotonic increasing
function of the first number and the second number computes
the sum of'the first number and the second number computes
the geometric mean of the first number and the second num-
ber.

In one embodiment, the system optionally includes a tem-
plate generator 946 that is configured to utilize at least one of
the highest ranked runs of test scenarios belonging to the
certain cluster to generate a test scenario template. Addition-
ally, the computer system may also include a data cleaner 948
that is configured to remove proprietary data from the test
scenario template.

In one example, the highest ranked runs test scenarios
belong to the top 20% of the runs in the certain cluster. In
another example, the highest ranked runs are one or more runs
that received the highest value given by the function of the
first number and the second number.

In one embodiment a data cleaner 948 may be included in
the system. The data cleaner 948 is configured to: select a
value from the test scenario template, and remove the selected
value from the test scenario template if the selected value
appears in less than a first predetermined number of the runs
of test scenarios in the certain cluster or the selected value
appears in runs of test scenarios in the certain cluster that are
associated with less than a second predetermined number of
different organizations. Both the first predetermined number
and the second predetermined number are greater than one.

In another embodiment, the data cleaner 948 may be con-
figured to: select a value from a run of a test scenario; check
whether the value appears in at least a first predetermined
number of the runs of the test scenarios, identified by the test
identifier 934; check whether the value appears in runs of test
scenarios, identified by the test identifier 934, which are asso-
ciated with at least a second predetermined number of difter-
ent organizations; and if both conditions are positive, enable
the test scenario template to utilize the selected value. Option-
ally, the data cleaner 948 is also configured not to enable the
test scenario template to utilize the selected value if at least
one of the conditions is negative.

In one embodiment, the computer system also optionally
includes a user interface 949 that is configured to suggest to a
user to run an instantiation of the test scenario template.

In one embodiment, the computer system also includes a
cluster selector 942. Optionally, the cluster selector 942 pro-
vides the second processor 938 with the selection of the
certain cluster. Optionally, the cluster selector 942 examines
clusters generated by the clustering module 940 in order to
make the selection of the certain cluster. In one example, the
cluster selector 942 receives a profile of a user and/or an
organization, and makes the selection of the certain cluster
based on the profile. For example, if the profile indicates that
auser utilizes a specific transaction in many tests, that cluster
selector 942 may select a cluster that contains runs of test
scenarios that also utilize the specific transaction. In another
example, the cluster selector 942 selects the certain cluster
based on statistical information related to the clusters; for
example, the size of the clusters and/or the number of orga-
nizations associated with runs belonging to the clusters.

US 9,317,404 B1

73

Optionally, the certain cluster is a cluster that includes runs
run by a large number of users and/or includes runs associated
with a large number of organizations. Optionally, the certain
cluster is that includes runs run by a largest number of users
and/or includes runs associated with a largest number of
organizations, from among all the clusters.

In some embodiments, the ranking module 944 is also
configured to rank runs belonging to the certain cluster, at
least in part, according to their connectivity factors. Option-
ally, computing connectivity factors takes into account how
much elements involved in a computation are prevalent
among different organization. For example, if a first screen
appears only in runs of test scenarios associated with a single
organization, this first screen may make smaller contributions
to connectivity factor computations, compared to contribu-
tion made by a second screen that is utilized by multiple
organizations running test scenarios. The fact that the screen
is utilized by multiple organizations means that connectivity
factor computations based on it are more likely to be accurate
with respect to other organizations.

In one embodiment, connectivity factors of runs of test
scenarios are computed with respect to number of organiza-
tions associated with runs. Optionally, a function computing
connectivity factors employs a threshold number of organi-
zations that need to be associated with an element, for it to
make a significant contribution towards the connectivity fac-
tor. For example, if an element in a run (e.g., a screen) is
utilized by a single organization, it makes a small contribution
to a connectivity factor of the run, compared to a contribution
it would make had the screen been utilized by multiple orga-
nizations. Optionally, elements that are utilized by less than
two organizations (e.g., they appear only in runs of a single
organization) are not utilized for computation of connectivity
factors.

In one embodiment, a connectivity factor of a run of a test
scenario utilizes a function that assigns a first run, focused on
a first element and which processes variations of the first
element in multiple phases, a higher rank than a second run,
which processes more elements in fewer corresponding pro-
cessing phases. Optionally, the function takes into account
whether the first element and the elements are utilized by
more than two organizations.

In another embodiment, a connectivity factor of a run of a
test scenario is computed as a function of associations
between a screen and a module, and of number of different
organizations that utilized the screen and the module. For
example, a connectivity factor of a run computed according to
associations between a screen and a module may increase if
the screen is utilized by multiple organizations and/or the
module is utilized by multiple organizations.

As used herein, if a module is tested by a run of a test
scenario associated with an organization, the module may be
considered utilized by the organization. Similarly, if a screen
appears in a run associated with an organization, the screen
may be considered utilized by the organization.

In yet another embodiment, a connectivity factor ofarun of
atest scenario is computed as a function of an amount of data
a certain screen, presented during the run, displays from its
previous screen in the run, and of the number of different
organizations that utilized the certain screen. For example,
the more overlap in the data displayed on the certain and
previous screens, the higher the connectivity factor. Addition-
ally, the more organizations utilize the certain screen, the
higher the connectivity factor attributed to the run.

In still another embodiment, a connectivity factor of a run
of a test scenario is computed as a function of number of
keystrokes typed by users while still in a screen and of the

20

40

45

50

55

74

number of different organizations that utilized the screen. For
example, the more keystrokes entered by users on average on
acertain screen, the higher the connectivity factor of arun that
displayed the certain screen. Additionally, the more organi-
zations utilize the certain screen, the higher the connectivity
factor attributed to the run.

In yet still another embodiment, a connectivity factor of a
run of a test scenario is computed by associating programs
with modules, logging which programs are executed, and
calculating the connectivity factor as a function of jumps
between modules and the number of organizations that uti-
lized the modules. For example, the more jumps between
modules in the run (as evident by switching between execu-
tion of programs associated with different modules), the
lower the connectivity factor of the run. Additionally, the
more organizations utilize the modules, the higher the con-
nectivity factor attributed to the run.

Monitoring users running test scenarios typically produces
a large number of runs of test scenarios that may be utilized,
among other uses, to generate test scenario templates. Given
the diversity typically observed in runs of test scenarios, it is
likely that not all runs will be equally useful for generating
test scenario templates. Furthermore, templates generated
from different runs may be of varying levels of usefulness for
other users. One type of aspect that may provide insight
towards the usefulness of a run of a test scenario and/or the
usefulness of a template generated from the run is connectiv-
ity factor of the test scenario.

A connectivity factor of a test scenario is a property indica-
tive of an extent the test scenario is focused on elements being
tested by it. A high connectivity factor indicates that the test
scenario focuses primarily on a small set of elements, while a
low connectivity factor indicates that the test scenario is
spread out, focusing on many elements, but focusing on each
of the many elements only to a small degree.

As used herein, a connectivity factor may be attributed to a
test scenario and/or to a run of a test scenario. If attributed to
the run of the test scenario, then the connectivity factor is
computed, at least in part, based on the run of the test scenario
(e.g., a number of screens visited by a user during the run).
Thus, different runs of a certain test scenario may have dif-
ferent connectivity factors for the certain test scenario, com-
puted based on characteristics of each run. Note that how a
connectivity factor for a certain test scenario is computed (see
examples below), may influence how susceptible the compu-
tation of the connectivity factor is to variations between dif-
ferent runs of the test scenario.

In some embodiments, it is beneficial to generate test sce-
nario templates from runs of test scenarios with high connec-
tivity factors. Having a high connectivity factor means that it
is likely that elements tested by a test scenario are well cov-
ered by the test scenario, e.g., various aspects of the elements
are tested since the test scenario dwells on them relatively a
lot. Conversely, having a low connectivity factor means that it
is likely that elements tested by a test scenario are only cur-
sorily treated by the test scenario. Thus, in order to effectively
and thoroughly test elements, it is better to run test scenarios
that cover the elements and have high connectivity factors.
Utilizing test scenarios with high connectivity factors also
reduces the number of test scenarios that are required to test a
certain element, which also reduces that time and/or expense
of' testing the certain element.

There are various connectivity factors that may be calcu-
lated for a test scenario. Each connectivity factor may exam-
ine various aspects of the test scenario, a run of the test
scenario, and/or the system. Below are some examples of
embodiments that calculate connectivity factors.

US 9,317,404 B1

75

In one embodiment, a test scenario includes several phases
of execution. By examining the test scenario and/or a run of
the test scenario, a focus of the test scenario may be deter-
mined, for at least some of the phases. Optionally, a phase
includes one or more transactions that may involve certain
system elements. In one example, connectivity factors are
computed by identifying which element (or elements) is
being processed during a certain phase of a test, and how
many phases of the test are spent on each element or varia-
tions of the element. Examples of elements may be business
processes and/or screens, or system elements such as data-
bases and/or servers. Thus, a test scenario that is focused
around a first element and processes variations of the first
element in multiple phases, has a higher connectivity factor
than a second test scenario that processes more elements in
fewer corresponding processing phases.

In another embodiment, a connectivity factor of a test
scenario is computed utilizing a function of associations
between screens visited when running the test scenario and
system modules. For example, if a certain test scenario
involves screens associated with several modules, it may have
a lower connectivity factor than another test scenario that
involves screens associated with a single system module. In
this example, the connectivity factor may relate to how much
a test scenario is focused on a small set of modules.

In yet another embodiment, a connectivity factor is a func-
tion of amount of data a certain screen displays, which was
also displayed in a previously displayed screen. Running a
test scenario often involves a user visiting a series of screens.
Having a second screen relate to much of the data in a first
screen, which appeared previously to the second screen, may
be an indication of a high connectivity factor for the test
scenario. The fact that there is overlap between the data
addressed in screens means that the elements (e.g., fields
and/or business processes) to which the data is related are
covered in multiple screens. This means that the elements
may be tested more thoroughly by such a test scenario, com-
pared to a test scenario in which there is a small amount of
data displayed in a second screen that comes from a previ-
ously displayed first screen. An example of a function that
may be used computing a connectivity factor of a test scenario
may be the average number of screens from the test scenario
an average field appears in. Another example of a function for
a connectivity factor for a test scenario may be the percentage
of fields in screens of a test scenario that appear in multiple
screens.

In still another embodiment, a connectivity factor of a test
scenario is based on monitoring keystrokes of users running
the test scenario. The connectivity factor may be a function of
the number of keystrokes typed in each screen. For example,
a high number of keystrokes, on average per screen, may be
attributed a high connectivity factor since it indicates that the
test scenario dwells a lot on each screen; thus, if a user dwells
on a screen, numerous aspects of the screen may be tested. In
contrast, entering a small number of keystrokes per screen, on
average, may indicate that few aspects of a screen may be
tested; hence, the corresponding test scenario may be
awarded a low connectivity factor.

In yet still another embodiment, calculating a connectivity
factor involves associating programs to modules, logging
which programs are executed, and taking note of switches of
programs associated with different modules. For example, the
more a running of a test scenario involves running of pro-
grams associated with a same module, the higher the connec-
tivity factor of the test scenario may be. If many programs run
in the test scenario are associated with the same module, it
may mean that various aspects of the module are tested by the

25

40

45

55

76

test scenario. In contrast, if running a test scenario involves
running various programs associated with different modules,
this may mean that an individual module is not well covered
by the test scenario, and only a small number of aspects of the
individual module may be tested.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 27
and/or FIG. 28 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
932, test identifier 934, the clustering module 940, the cluster
selector 942, the ranking module 944, the template generator
946, the data cleaner 948, and the user interface 949. Option-
ally, one or more of the aforementioned components may
involve software that runs on the first processor 936 and/or on
the second processor 938. Additionally, one or more of the
aforementioned components may be implemented on a
remote server, such as a cloud-based server. Optionally, the
first processor 936 may be the second processor 938. Option-
ally, the first processor 36 and/or the second processor 938 are
located on a remote server that does not belong to any of the
different organizations. For example, the remote server may
be a cloud-based server.

Inone example, the data cleaner 948 is implemented as part
of the template generator 946. In another example, the clus-
tering module 940 and the cluster selector 942 are both imple-
mented by the same software module. In yet another example,
the clustering module 940 and/or the cluster selector 942
involve software that is executed on the first processor 936
and/or the second processor 938.

In one embodiment, the clustering module 940, cluster
selector 942, and/or ranking module 944, are implemented as
a cloud-based service that receives runs of test scenarios
identified from the activity data 933 of the users 930 belong-
ing to the different organizations, and ranks at least some of
the runs 945. Optionally, the template generator 946, the test
identifier 934, and/or the data cleaner 948 may also be part of
the cloud-based service.

FIG. 29 illustrates one embodiment of a computer imple-
mented method for ranking runs of test scenarios belonging to
a cluster of similar runs. The illustrated embodiment includes
the following steps:

In step 301, identifying runs of test scenarios run by users
belonging to different organizations on software systems
belonging to the different organizations. Each test scenario
involves running at least one transaction, and each transaction
is instantiated from a transaction type.

In step 302, receiving a selection of a certain transaction
type.

In step 303, calculating, based on the runs of the test sce-
narios, a first number of different organizations associated
with users that ran test scenarios involving execution of a
transaction instantiated from the certain transaction type.

In step 304, clustering the runs of test scenarios to clusters
comprising similar runs of test scenarios.

In step 305, receiving a selection of a certain cluster from
among the clusters.

In step 306, calculating a second number of different orga-
nizations that are associated with users that ran test scenarios
that both belong to the certain cluster and involve execution of
a transaction instantiated from the certain transaction type.

And in step 307, ranking runs of test scenarios belonging to
the certain cluster according to a function of the first number
and the second number.

In one embodiment, ranking runs of test scenarios belong-
ing to the certain cluster involves imposing an ordering on at

US 9,317,404 B1

77

least some of the runs of test scenarios belonging to the
certain cluster. This means, that for at least a first run and a
second run belonging to the certain cluster, the ranking indi-
cates whether the first run should be ranked higher than the
second run, or vice versa. Optionally, the ranking is given in
a form of a permutation of some of the runs. Optionally, the
ranking is given in a form of ordered pairs of first and second
runs, designating for the first and the second runs in the pair
that the first run should be ranked higher than the second run.

In another embodiment, ranking runs of test scenarios
belonging to the certain cluster involves computing the func-
tion of the first number and the second number for at least
some of the runs belonging to the certain cluster. Optionally,
the function values are computed for a first run and a second
run belonging to the certain cluster, such that, based on the
computed function values for the first run and the second run,
an order may be imposed on the first and second runs. For
example, based on the function values, it may be determined
that the first run, which has a higher function value than the
second run, should be ranked higher than the second run.

Ranking runs of test scenarios need not necessarily involve
ranking all the runs belonging to the certain cluster. In some
embodiments, ranking runs of test scenarios belonging to the
certain cluster involves determining the function value for
only some of the runs; thus, for some of the runs a ranking
may not be determined. Additionally or alternatively, an order
indicated by ranking may be a partial order, which does not
resolve for all pairs of runs of test scenarios, which of runs in
a pair should be ranked higher. In some embodiments, mul-
tiple runs belonging to the certain cluster may receive an
identical function value, indicating that they are ranked the
same.

In one embodiment, the computer implemented method
includes optional step 308 which involves utilizing at least
one of the highest ranked runs of test scenarios for generating
a test scenario template that represents similar runs of test
scenarios in the certain cluster. In one example, the highest
ranked runs test scenarios belong to the top 20% of the runs in
the certain cluster. Optionally, the computer implemented
method also includes optional steps involving recording a
user while running a certain test scenario; identifying that the
certain test scenario is similar to the generated test scenario
template; and suggesting the user to run an instantiation of the
test scenario template. Optionally, the computer implemented
method also includes an optional steps involving selecting a
value from the test scenario template, and removing the
selected value from the test scenario template if the selected
value appears in less than a first predetermined number of
runs in the selected cluster or the selected value appears in
description of runs in the selected cluster that are associated
with less than a second predetermined number of different
organizations. Both the first predetermined number and the
second predetermined number are greater than one. Option-
ally, the computer implemented method also includes
optional steps involving selecting a value from a description
of run in the selected cluster, testing whether the value
appears in at least a first predetermined number of runs in the
selected cluster, testing whether the value appears in descrip-
tion of runs in the selected cluster that are associated with at
least a second predetermined number of different organiza-
tions, and if both conditions are positive, enabling the test
scenario template to utilize the selected value. Optionally, the
computer implemented method also includes optional step
involving not enabling the test scenario template to utilize the
selected value if at least one of the aforementioned conditions
is negative.

10

15

20

25

30

35

40

45

50

55

60

65

78

In one embodiment, the computer implemented method
includes optional step 300, which involves monitoring the
users belonging to different organizations and providing data
collected in the monitoring to be used for the identifying of
the runs of test scenarios.

In one embodiment, the computer implemented method
illustrated in FIG. 29 includes an optional step which involves
customizing the test scenario template for a user by adding to
the test scenario template proprietary data relevant to the user.

In one embodiment, the computer implemented method
includes optional step 309a¢ which involves removing propri-
etary data from the template by selecting a value from the test
scenario template, and removing the selected value from the
test scenario template if the selected value appears in less than
a first predetermined number of runs in the selected cluster or
the selected value appears in description of runs in the
selected cluster that are associated with less than a second
predetermined number of different organizations. Optionally,
both the first predetermined number and the second predeter-
mined number are greater than one.

In one embodiment, the computer implemented method
includes step 3095 which involves suggesting to a user to run
an instantiation of the test scenario template. Optionally, the
user interface 949 is utilized to suggest to the user to run the
instantiation of the template. Optionally, the template is cus-
tomized prior to suggesting to the user.

In one embodiment, ranking the runs of test scenarios
belonging to the certain cluster is done according to connec-
tivity factors of the runs, computed with respect to number of
organizations associated with runs. Optionally, the ranking
abides by a principal that a first run, focused on a first element,
which processes variations of the first element in multiple
phases, and is utilized by at least two different organizations,
receives a higher rank than a second run, which processes
more elements in fewer corresponding processing phases,
and the elements are utilized by at least two different organi-
zations. Optionally, calculating the connectivity factor is a
function of associations between a screen and a module and
number of different organizations that utilized the screen and
the module. Optionally, calculating the connectivity factor is
a function of amount of data a certain screen displays from its
previous screen and number of different organizations that
utilized the certain screen. Optionally, calculating the con-
nectivity factor is a function of number of keystrokes typed by
users while in a certain screen, and of number of different
organizations that utilized the certain screen. Optionally, cal-
culating the connectivity factor involves associating pro-
grams with modules, logging which programs are executed,
and calculating the connectivity factor as a function of jumps
between modules and the number of organizations that uti-
lized the modules

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to rank runs of test scenarios belonging to a cluster. The
computer includes a processor, and the non-transitory com-
puter-readable medium stores the following program code:

Program code for identifying runs of test scenarios run by
users belonging to different organizations on software sys-
tems belonging to the different organizations.

Program code for a receiving selection of a certain trans-
action type.

Program code for calculating, based on the runs of the test
scenarios, a first number of different organizations associated
with users that ran test scenarios involving execution of a
transaction instantiated from the certain transaction type.

Program code for clustering the runs of test scenarios to
clusters comprising similar runs of test scenarios.

US 9,317,404 B1

79

Program code for receiving a selection of a certain cluster
from among the clusters.

Program code for calculating a second number of different
organizations that are associated with users that ran test sce-
narios that both belong to the certain cluster and involve
execution of a transaction instantiated from the certain trans-
action type.

And program code for ranking runs of test scenarios
belonging to the certain cluster according to a function of the
first number and the second number.

In one embodiment, the non-transitory computer-readable
medium stores program code for utilizing at least one of the
highest ranked runs of test scenarios for generating a test
scenario template that represents similar runs of test scenarios
in the certain cluster.

In one embodiment, the non-transitory computer-readable
medium stores program code for monitoring the users
belonging to different organizations and providing data col-
lected in the monitoring to be used for the identifying of the
runs of test scenarios.

In one embodiment, the non-transitory computer-readable
medium stores program code for customizing the test sce-
nario template for a user by adding to the test scenario tem-
plate proprietary data relevant to the user.

In one embodiment, the non-transitory computer-readable
medium stores program code for removing proprietary data
from the template by selecting a value from the test scenario
template, and removing the selected value from the test sce-
nario template if the selected value appears in less than a first
predetermined number of runs in the selected cluster or the
selected value appears in description of runs in the selected
cluster that are associated with less than a second predeter-
mined number of different organizations. Optionally, both the
first predetermined number and the second predetermined
number are greater than one.

In one embodiment, the non-transitory computer-readable
medium stores program code for suggesting to a user to run an
instantiation of the test scenario template.

FIG. 30 illustrates one embodiment of a computer system
configured to rate popularity of a cluster of runs of test sce-
narios. The illustrated embodiment includes at least interface
312, a clustering module 314, an organization counter 316,
and a rating module 318.

The interface 312 is configured to receive runs of test
scenarios run by users belonging to different organizations
essentially on same packages of software systems. Herein,
the limitation “essentially on same packages of software sys-
tems” covers packages of the same type which may or may
not feature different customizations, such as SAP setup files,
and/or Oracle customization code.

The clustering module 314 is configured to cluster the runs
into clusters that include similar runs of test scenarios.
Optionally, the clustering module is configured to process one
or more of the following logged activities: list of users who
ran the test scenarios, analysis of access to a database, mes-
sages returned from executed transactions, values returned by
fields, and procedures utilized by a test scenario.

The organization counter 316 is configured to count a
number of different organizations associated with a cluster;
an organization is considered associated with a certain cluster
if the certain cluster includes a run of a test scenario run by a
user belonging to the organization.

And the cluster rating module 318 configured to compute
popularity ratings of at least some of the clusters based on the
number of different organizations associated with the clus-
ters. The computed popularity ratings follow a rule that the

10

15

20

25

30

35

40

45

50

55

60

65

80

higher the number of different organizations associated with
a cluster, the higher the popularity rating of the cluster.

In one embodiment, the cluster rating module 318 is also
configured to count number of common input fields in a
cluster. A common input field in a cluster is an input field used
by at least a predetermined percentage of the runs in the
cluster. The cluster rating module 318 is also configured to
adjust the popularity rating of a cluster to reflect the percent-
age of common input fields in the cluster; the more common
input fields in runs belonging to a cluster, the higher the
popularity rating of the cluster.

In one embodiment, computing popularity ratings of at
least some of the clusters results in imposing an ordering of at
least some of the clusters. This means that for at least a first
cluster and a second cluster, the popularity ratings indicate
whether the first cluster should be rated higher than the sec-
ond cluster, or vice versa. Optionally, the popularity rating is
given in a form of a permutation of some of the clusters.
Optionally, the popularity rating is given in a form of ordered
pairs of first and second clusters, designating for a first cluster
and a second cluster in a pair, that the first cluster should be
placed higher than the second cluster.

In another embodiment, popularity ratings of at least some
clusters are given as function values associated with the at
least some of the clusters. Optionally, a popularity rating of a
cluster is a function of the number of different organizations
associated with the cluster. Optionally, the popularity ratings
are computed for a first cluster and a second cluster, such that,
based on the computed values for the first cluster and the
second cluster, an order may be imposed on the first and the
second clusters. For example, based on the values, it may be
determined that the first cluster, which has a higher value than
the second cluster, should be placed higher than the second
cluster.

Computing popularity rating of clusters need not necessar-
ily involve computing popularity rating for all the clusters
generated by the clustering module 314. For example, some
clusters may be ignored due to their size and/or association of
their runs with too few organizations. Optionally, computing
popularity ratings of clusters is done only for some of the
clusters. Optionally, multiple clusters may have an identical
popularity rating value, indicating that they are rated the
same.

In one embodiment, the computer system includes an
optional template generator 320 that is configured to generate
a test scenario template based on at least one run of a test
scenario from a cluster with a high popularity rating. Option-
ally, the computer system may include a user interface 326
that is configured to suggest to a user to run an instantiation of
the test scenario template. The test scenario template may
identify a transaction used by the at least one run of a test
scenario belonging to the cluster with a high popularity rat-
ing, and possible values for running the transaction. Option-
ally, the template generator 320 is configured to generate the
test scenario template based on at least two runs of test sce-
narios belonging to the cluster with the highly popularity
rating. Additionally, the at least two runs were run by users
associated with different organizations. Optionally, the test
scenario template includes a combination of the possible
values, and the combination does not appear in any of the at
least two runs of test scenarios.

In one embodiment, the computer system includes an
optional data cleaner 322 that is configure to select a value
from the test scenario template, and remove the selected value
from the test scenario template if the selected value appears in
less than a first predetermined number of runs belonging to
the cluster with the high popularity rating, or runs belonging

US 9,317,404 B1

81

to the cluster with the high popularity rating that include the
selected value are associated with less than a second prede-
termined number of different organizations. Additionally,
both the first predetermined number and the second predeter-
mined number are greater than one.

In another embodiment, the data cleaner 322 is configured
to select a value from a run of a test scenario in the cluster with
the high popularity rating, and test whether the value appears
in at least a first predetermined number of runs of test sce-
narios in the cluster with the high popularity rating. Addition-
ally, the data cleaner 322 is configured to also test whether the
value appears in runs in the cluster with the high popularity
rating that are associated with atleast a second predetermined
number of different organizations. If both conditions are posi-
tive, the data cleaner 322 is to enable the test scenario tem-
plate to utilize the selected value. Optionally, value if at least
one of the conditions is negative, the data cleaner 322 is
configured not to enable the test scenario template to utilize
the selected value.

In one embodiment, the computer system also includes a
monitoring module 311. The monitoring module is config-
ured monitor the users 310 belonging to the different organi-
zations and to identify the runs of the test scenarios of the
users 310 belonging to different organizations, essentially on
same packages of software systems. Optionally, the runs of
the test scenarios are provided to the interface 312.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 30 in
different ways. For example, in some embodiments one or
more of the following may be implemented by the same
software module and/or software modules running on the
same processor: the monitoring module 311, the interface
312, the clustering module 314, the organization counter 316,
the rating module 318, the template generator 320, the data
cleaner 322, and the user interface 326. Optionally, one or
more of the aforementioned components may be imple-
mented on a remote server, such as a cloud-based server.

In one example, the data cleaner 322 is implemented as part
of the template generator 320. In another example, the clus-
tering module 314 and the organization counter 316 are both
implemented by the same software module. In yet another
example, the rating module 318 is implemented as part of the
clustering module 314.

In one embodiment, the interface 312, the clustering mod-
ule 314, the organization counter 316, and/or rating module
318, are implemented as a cloud-based service that receives
runs of test scenarios identified from monitoring of the users
310 belonging to the different organizations, and rates at least
some of the clusters. Optionally, the template generator 320
and/or the data cleaner 322 may also be part of the cloud-
based service.

FIG. 31 illustrates one embodiment of a computer imple-
mented method for rating popularity clusters of runs of test
scenarios. The illustrated embodiment includes the following
steps:

In step 331, receiving runs of test scenarios run by users
from different organizations essentially on same packages of
software systems.

In step 332, clustering the runs into clusters comprising
similar runs of test scenarios.

In step 333, counting number of different organizations
associated with the clusters; an organization is associated
with a cluster if a user belonging to the organization runs a test
scenario belonging to the cluster.

And in step 334, computing popularity ratings of at least
some of the clusters based on number of different organiza-
tions associated with each of the clusters; wherein the higher

20

25

40

45

55

60

82

the number of different organizations associated with a clus-
ter, the higher the popularity rating of the cluster.

In one embodiment, the computer implemented method
includes optional step 330 which involves monitoring the
users running the test scenarios on the software systems that
belong to the different organizations in order to identify the
runs of the test scenarios. Optionally, the runs of the test
scenarios are received by the interface 312.

In one embodiment, the computer implemented method
includes optional step 336 which involves generating a test
scenario template based on at least one run of a test scenario
from a cluster with a high popularity rating. Optionally, the
test scenario template identifies a transaction used by the at
least one run of a test scenario belonging to the cluster with
the high popularity rating, and possible values for running the
transaction. In one example, a high popularity rating is a
popularity rating that places a cluster in the top 20% of the
clusters, i.e., 80% of the clusters have a lower popularity
rating. In another example, a high popularity rating is the
highest popularity rating value given to any of the clusters.

In one embodiment, generating the test scenario template
in optional step 336 is based on at least two runs of test
scenarios belonging to the cluster with the high popularity
rating. Optionally, the at least two runs are run by users
associated with different organizations. Optionally, the test
scenario template identifies a transaction used by the at least
one of the at least two runs of test scenarios, and possible
values for running the transaction. Additionally, the test sce-
nario template may include a combination of the possible
values, and the combination does not appear in any of the at
least two runs of test scenarios.

In one embodiment, the computer implemented method
illustrated in FIG. 31 includes an optional step involving
selecting a value from the test scenario template, and remov-
ing the selected value from the test scenario template if the
selected value appears in less than a first predetermined num-
ber of runs of test scenarios in the cluster with the high
popularity rating. Additionally or alternatively, the optional
step involves removing the selected value from the test sce-
nario template if the selected value appears in runs of test
scenarios in the cluster with the high popularity rating that are
associated with less than a second predetermined number of
different organizations. Optionally, both the first predeter-
mined number and the second predetermined number are
greater than one.

In another embodiment, the computer implemented
method illustrated in FIG. 31 includes an optional step involv-
ing selecting a value from a run of a test scenario in the cluster
with the high popularity rating, testing whether the value
appears in at least a first predetermined number of runs of test
scenarios in the cluster with the high popularity rating. Addi-
tionally, the step involves testing whether the value appears in
runs in the cluster with the high popularity rating that are
associated with at least a second predetermined number of
different organizations, and if both conditions are positive,
enabling the test scenario template to utilize the selected
value. Optionally, if at least one of the conditions is negative
the test scenario template is not allowed to utilize the selected
value.

In one embodiment, the computer implemented method
includes step 338 which involves suggesting to a user to run
an instantiation of the test scenario template. Optionally, the
user interface 298 is utilized to suggest to the user to run the
instantiation of the template. Optionally, the template is cus-
tomized prior to suggesting to the user.

In one embodiment, the computer implemented method
illustrated in FIG. 31 includes an optional step that involves

US 9,317,404 B1

83

counting a number of common input fields in clusters. A
common input field in a cluster is an input field used by at least
a predetermined percentage of the runs in the cluster. Addi-
tionally, the computer implemented method illustrated in
FIG. 31 includes an optional step that involves adjusting the
popularity rating of a cluster to reflect the percentage of
common input fields in the cluster. The more common input
fields in runs in a cluster, the higher the popularity rating of
the cluster. In one example, the popularity rating of a cluster
is multiplied by the percentage of common input fields in the
cluster.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to rate popularity of clusters of runs of test scenarios. The
computer includes a processor, and the non-transitory com-
puter-readable medium stores the following program code:

Program code for receiving runs of test scenarios run by
users from different organizations essentially on same pack-
ages of software systems.

Program code for clustering the runs into clusters compris-
ing similar runs of test scenarios.

Program code for counting number of different organiza-
tions associated with the clusters; an organization is consid-
ered associated with a cluster if a user belonging to the orga-
nization runs a test scenario belonging to the cluster.

And program code for rating popularity of the clusters
based on number of different organizations associated with
each of the clusters; the higher the number of different orga-
nizations associated with a cluster, the higher the popularity
rating of the cluster.

In one embodiment, the non-transitory computer-readable
medium also stores program code for monitoring the users
running the test scenarios on the software systems that belong
to the different organizations in order to identify the runs of
the test scenarios.

In one embodiment, the non-transitory computer-readable
medium also stores program code for generating a test sce-
nario template based on at least one run of a test scenario from
a cluster with a high popularity rating. Optionally, the test
scenario template identifies a transaction used by the at least
one run of a test scenario belonging to the cluster with the
high popularity rating, and possible values for running the
transaction.

Optionally, the non-transitory computer-readable medium
also stores program code for generating of the test scenario
template based on at least two runs of test scenarios belonging
to the cluster with the high popularity rating; and wherein the
at least two runs were run by users associated with different
organizations. Optionally, the test scenario template identi-
fies a transaction used by the at least one of the at least two
runs of test scenarios, and possible values for running the
transaction; and wherein the test scenario template includes a
combination of the possible values, and the combination does
not appear in any of the at least two runs of test scenarios.

In one embodiment, the non-transitory computer-readable
medium also stores program code for selecting a value from
the test scenario template, and removing the selected value
from the test scenario template if the selected value appears in
less than a first predetermined number of runs of test sce-
narios in the cluster with the high popularity rating or the
selected value appears in runs of test scenarios in the cluster
with the high popularity rating that are associated with less
than a second predetermined number of different organiza-
tions. Optionally, both the first predetermined number and the
second predetermined number are greater than one.

10

15

20

25

30

40

45

50

55

60

65

84

In one embodiment, the non-transitory computer-readable
medium also stores program code for suggesting to a user to
run an instantiation of the test scenario template.

In one embodiment, the non-transitory computer-readable
medium also stores program code for counting number of
common input fields in the selected cluster. A common input
field in a cluster is an input field used by at least a predeter-
mined percentage of the runs in the cluster. Additionally, the
non-transitory computer-readable medium also stores pro-
gram code for adjusting the popularity rating of a cluster to
reflect the percentage of common input fields in the cluster;
the more common input fields in runs in a cluster, the higher
the popularity rating of the cluster.

FIG. 32 and FIG. 33 illustrate embodiments of a computer
system configured to utilize runs of test scenarios run by users
belonging to different organizations to manipulate a test sce-
nario template according to divergent routes in the runs. The
illustrated embodiments include at least a test identifier 354,
aroute analyzer 356, a database 358, a route counter 360, and
a template manipulator 362.

Herein, a route defines a sequence of one or more elements
involved in a run of a test scenario; an element may be a test
step, a transactions, or a screen. Additionally, a test scenario
template may define a template route that instantiations of the
template are supposed to follow. Thus, a run of a test scenario
based on a template is expected to reflect the template route;
for example, the run may describe screens and/or transactions
included in the template route.

The test identifier 354 is configured to identify runs of test
scenarios run by users belonging to different organizations on
software systems associated with the different organizations.
Optionally, the runs are identified based on activity data 353
obtained from monitoring the users.

In one embodiment, the route analyzer 356 is configured to
receive a certain run of a test scenario instantiated from a test
scenario template. Optionally, the route analyzer 356 may be
configured to receive many runs of test scenarios; the descrip-
tion below describes examples of what may happen with the
certain run. In one example, the certain run was run by a user
after being suggested the template via a user interface.
Optionally, the certain run of the test scenario was run on a
software system associated with a certain organization that
does not belong to the different organizations. Optionally, the
different organizations and the certain organization are asso-
ciated with different fields of operation (e.g., the different
organizations are in the insurance field, while the certain
organization is in the field of automobile manufacture). Alter-
natively, the different organizations and the certain organiza-
tion are associated with a same field of operation.

The test scenario template defines a template route that
instantiations of the template are supposed to follow. That is,
each run of a test scenario instantiated from the template is
supposed to reflect a certain sequence of elements, as defined
by the template route. Optionally, a divergent route that
diverges from a template route is characterized by a different
sequence of elements compared to sequence of elements
defined by the template route.

In one embodiment, based on the elements identified in the
certain run, the route analyzer 356 characterizes a route fol-
lowed by the certain run. The route analyzer 356 is also
configured to identify that the certain run follows a certain
divergent route that diverges from the template route. For
example, the route analyzer 356 may compare elements in the
template route with elements identified in the certain run in
order to determine whether the elements are similar and/or
appear in the same order as the elements in the template route.

US 9,317,404 B1

85

In one embodiment, the route analyzer 356 is configured to
identify divergent routes that diverge from the template route
and later on converge back to the template route. Additionally
or alternatively, the route analyzer 356 is also configured to
identify divergent routes that diverge from the template route
and do not converge back to the template route. Additionally
or alternatively, the route analyzer is also configured to iden-
tify divergent routes that merge with the template route.

In one embodiment, if there is an essential difference
between the certain route and the template route the template
route it is considered a divergent route. For example, an
essential difference may be a single element that differs
between the certain route and the template route (e.g., a
screen in the certain route that is not in the template route, a
transaction in the template route that is not executed when
following the certain route). Optionally, an essential differ-
ence involves at least a certain number of elements and/or a
certain proportion of elements. For example, there may be an
essential difference between the certain route and the tem-
plate route if they differ on at least 5 elements and/or 15% of
the elements.

In one embodiment, the database 358 is configured to store
the certain divergent route identified by the route analyzer
356. Optionally, the database 358 may be configured to store
many divergent routes; the examples listed below describe
various possibilities for how the database 358 may handle the
certain divergent route.

In one example, each time a divergent route is identified in
a run of a test scenario, the divergent route is stored in the
database 358. Optionally, storing a divergent route involves
storing elements included in the divergent route, a run of a test
scenario that follows the divergent route, information pertain-
ing to a user that ran a test scenario that followed the divergent
route, and/or information pertaining to an organization asso-
ciated with a run of a test scenario that followed the divergent
route.

In another example, each time a divergent route is identi-
fied in a run of a test scenario, the route analyzer 356 and/or
the database 358 determine whether a route essentially the
same as the divergent route has been already stored. If no
essentially same divergent route has been stored, the diver-
gent route is stored.

In one embodiment, routes that are essentially the same
include the same sequence of screens. Optionally, routes that
are essentially the same have a same sequence of screens but
with different user keys. Optionally, routes that are essentially
the same have a same sequence of screens but utilize different
default values for at least some of the fields displayed on the
screens.

Optionally, if an essentially same route has already been
stored once, then a certain counter associated to the divergent
route is incremented. Optionally, such a counter may be a
counter corresponding to runs following the divergent route,
a counter corresponding to users that ran runs following the
divergent route, and/or a counter corresponding to organiza-
tions associated with runs following the divergent route.

In one embodiment, the route counter 360 is configured to
count number of divergent routes stored in the database 358
that are essentially the same as the certain divergent route.
Optionally, the route counter 360 queries and/or searches the
database 358. Optionally, by processing results returned by
the search and/or query the route counter 360 is able to return
the number of number of divergent routes that are essentially
the same as the certain divergent route. For example, the route
counter 360 counts the number of divergent routes returned in
the search and/or query. Optionally, the route counter 360
bases the number of divergent routes that are essentially the

35

40

45

55

86

same as the certain divergent route on one or more values
returned by counters associated to divergent routes. For
example, given the certain divergent route, the route counter
360 returns a sum of counters associated with divergent
routes that are essentially the same as the certain divergent
route.

The template manipulator 362 is configured to manipulate
the test scenario template according to the divergent routes in
the database 358 that are essentially the same as the certain
divergent route, generating a manipulated template 363. In
one embodiment, the template manipulator 362 manipulates
the template only if the number of divergent routes stored in
the database 358 that are essentially the same as the certain
divergent route reaches a predetermined threshold.

In one embodiment, the predetermined threshold is
selected to have a certain value that signifies a likelihood of
general usefulness of a certain divergent route; thus, the fact
that the divergent routes essentially the same as the certain
divergent route have a sufficiently large utilization (as indi-
cated by reaching the predetermined threshold), indicates that
the divergent routes are likely to be useful for other organi-
zations too

In one embodiment, the predetermined threshold may be a
fixed value. For example, two divergent routes, i.e., two dif-
ferent runs of test scenarios need to have been identified as
containing the essentially the same route as the certain diver-
gent route in order for the predetermined threshold to be
reached.

In another embodiment, the predetermined threshold may
be proportional to various factors such as the number of the
runs of the test scenarios, the number of users that ran the test
scenarios, and/or the number of organizations associated with
the runs of the test scenarios. In one example, the predeter-
mined threshold increases with the number of different orga-
nizations, thus for instance, if there are 10 different organi-
zations the predetermined threshold may be 3, but if there are
100 different organizations, the predetermined threshold may
be 10.

In one embodiment, manipulating a test scenario template
by the template manipulator 362 involves updating the tem-
plate so the manipulated template 363 is different from the
template prior to the updating. In one example, updating the
test scenario template may involve adding one or more ele-
ments found in the divergent routes to the test scenario tem-
plate. In another example, updating the test scenario template
may involve removing one or more elements found in the test
scenario template that are not found in the divergent routes. In
yet another, updating the test scenario template may involve
changing order of one or more elements found in the test
scenario template, according to an order of elements found in
the divergent routes.

In another embodiment, manipulating a test scenario tem-
plate by the template manipulator 362 involves generating a
new test scenario template based on the test scenario template
and one or more of the divergent routes, which is considered
the manipulated template 363. Thus, the manipulated tem-
plate 363 may refer to an updated template or a newly gener-
ated template, depending on what manipulation the template
manipulator 362 is configured to perform.

In one example, the test scenario template 794 illustrated in
FIG. 34 is updated according to divergent routes. In this
example, template 794 involves two transactions (denoted
“Tx1” and “Tx2” in FIG. 34) which include five screens
(denoted “Scr 17 to “Scr 5” in FIG. 34). Based on runs of test
scenarios by different users from different organizations, it
may be determined that there is a route 796 that diverges from
the route of the template 794. According to the divergent

US 9,317,404 B1

87
route, many users run an additional screen 795 belonging to
Tx1 (the screen 795 denoted by “Scr 7” in FIG. 34). There-
fore, the template 794 may be manipulated to create a
manipulated template 797 which includes the screen 795 in
the appropriate place. Optionally, the manipulated template
797 replaces the template 794. Alternatively, the manipulated
template 797 may be created in addition to the template 794.

In one embodiment, the computer system optionally
includes a data cleaner 366 configured to select a value from
the manipulated test scenario template 363, and remove the
selected value from the manipulated template 363 if the
selected value does not appear in runs of test scenarios that
follow at least two divergent routes that are essentially the
same as the certain divergent route. Optionally, the data
cleaner 366 is also configured to check that the at least two
divergent routes are associated with at least two different
organizations. For example, there is at least a first run of a test
scenario that follows a first registered divergent route that is
essentially the same as the certain divergent route; there is at
least a second run of a test scenario that follow a first divergent
route that is essentially the same as the certain divergent route
that follows a second registered divergent route that is essen-
tially the same as the certain divergent route; and a first
organization is associated with the first run, and a second
different organization, is associated with the second run.

In another embodiment, the computer system optionally
includes a ranking module 364 configured to rank templates,
such as, the manipulated test scenario template 363. Option-
ally, ranking the manipulated template 363 is done according
to the number of its corresponding divergent routes. For
example, the more divergent routes corresponding to a
manipulated template 363, the higher the manipulated tem-
plate 363 is ranked. In one example, ranking involves order-
ing templates according to number of their corresponding
divergent routes. In another example, ranking involves
assigning templates scores proportional to the number of their
corresponding divergent routes. In still another example,
ranking involves ordering templates according to number of
different organizations corresponding to the divergent routes.
The larger the number of organizations associated with runs
that had divergent routes found to be essentially the same as a
route corresponding to the manipulated template 363, the
higher the rank of the manipulated template 363.

In one embodiment, the computer system optionally
includes a monitoring module 352 that is configured to moni-
tor the users 350 belonging to the different organizations and
to the activity data 353 obtained from monitoring the users
350 to the test identifier 354.

In another embodiment, the computer system optionally
includes a user interface 368 configured to suggest to auser to
run an instantiation manipulated test scenario template.
Optionally, the user interface 368 may initiate the instantia-
tion of the manipulated test scenario template; for example,
the user interface 368 may present a first screen belonging to
the manipulated test scenario template and prompt a user to
take a certain action to advance execution.

In one embodiment, the route analyzer 356 is configured to
receive a run of a test scenario this is instantiated from a first
test scenario template. The first test scenario template defines
a first template route that instantiations of the first test sce-
nario template are supposed to follow. The route analyzer 356
is also configured to determine whether the run follows a
certain divergent route that diverges from the first template
route. Optionally, if the it is determined that the run does
follow the certain divergent route, the certain divergent route
is stored in the database 358.

25

30

40

45

88

In one embodiment, the route counter 360 is configured to
receive a second template route belonging to a second test
scenario template. For example, there is a second run of a test
scenario that is an instantiation of the second test scenario
template; the second run follows a second template route
defined by the second test scenario template. Optionally, the
second test scenario template is associated with a certain
organization that does not belong to the different organiza-
tions; for example, a user belonging to the certain organiza-
tion ran the run of the second test scenario. Optionally, the
route counter 360 is also configured to count number of
divergent routes in the database 358 that are similar to second
template route.

In one embodiment, the template manipulator 362 is con-
figured to manipulate the second test scenario template
according to the divergent routes in the database that are
similar to the second template route. Optionally, the template
manipulator 362 performs the manipulation if the number of
divergent routes reaches a predetermined threshold. Option-
ally, the template manipulator 362 is also configured not to
manipulate the second test scenario template according to the
divergent routes if the number does not reach the predeter-
mined threshold.

In one example, the software systems are screen based, and
similar divergent routes start from, and end with, the same
screens. In another example, the software systems are screen
based, and similar divergent routes have the same chain of
screens but with different user keys. In still another example,
similar divergent routes have the same sequence of screens,
but possibly utilize different default values for at least some
fields displayed on the screens.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 32
and/or FIG. 33 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
352, the test identifier 354, the route analyzer 356, the data-
base 358, the route counter 360, the template manipulator
362, the ranking module 364, the data cleaner 366, and the
user interface 368. Optionally, one or more of the aforemen-
tioned components may be implemented on a remote server,
such as a cloud-based server.

In one example, the route analyzer 356 and/or the route
counter 360 are implemented, at least in part, as part of the
database 358. For example, they may involve software mod-
ules that belong to the database 358. In another example, the
route analyzer 356 and the route counter 360 are implemented
by the same software module that interacts with the database
358. Inyet another example, the ranking module 364 is imple-
mented as part of the template manipulator 362.

In one embodiment, the test identifier 354, the route ana-
lyzer 356, the database 358, the route counter 360, and/or the
template manipulator are implemented as a cloud-based ser-
vice that receives the activity data 353 of the users and
manipulates templates to better suit the needs of the users. For
example, the manipulated routes may test elements in a new
and/or different way. Optionally, the ranking module 364
and/or the data cleaner 366 may also be part of the cloud-
based service.

FIG. 35 illustrates one embodiment of a computer imple-
mented method for utilizing divergent routes identified in
runs of test scenarios to manipulate a test scenario template.
The illustrated embodiment includes the following steps:

In step 371, identifying runs of test scenarios run by users
belonging to the different organizations on software systems
associated with the different organizations.

US 9,317,404 B1

89

In step 372, receiving a certain run of a test scenario instan-
tiated from a test scenario template; the certain run of the test
scenario was run on a software system associated with a
certain organization that is not one of the different organiza-
tions. Optionally, the different organizations and the certain
organization are associated with different fields of operation.
Alternatively, the different organizations and the certain orga-
nization are associated with a same field of operation.

Optionally, the test scenario template defines a template
route that instantiations of the template are supposed to fol-
low. Optionally, the template route includes a sequence of one
or more elements involved in running an instantiation of the
template. Optionally, an element may be a test step, a trans-
action, or a screen.

Instep 373, identifying that the certain run follows a certain
divergent route that diverges from the template route. Option-
ally, a divergent route is characterized by a different sequence
of'elements compared to sequence of elements defined by the
template route.

In step 374, storing the certain divergent route in the data-
base 358.

In step 375, counting number of divergent routes in the
database 358 that are essentially the same as the certain diver-
gent route.

And in step 377, if the number reaches a predetermined
threshold, manipulating the test scenario template according
to the divergent routes in the database that are essentially the
same as the certain divergent route. Optionally, the predeter-
mined threshold is selected such that reaching the predeter-
mined threshold indicates that the essentially the same diver-
gent routes are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the number does not reach the predetermined
threshold, step 377 involves refraining from manipulating the
test scenario template according to the divergent routes. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable option for an orga-
nization associated with runs that follow the certain divergent
route. Additionally, a number that does not reach the prede-
termined threshold may indicate that the divergent routes are
too specific, and are likely useful primarily for the organiza-
tions that ran them.

In one embodiment, manipulating the test scenario tem-
plate according to the divergent routes involves updating the
test scenario template according to one or more of the diver-
gent routes; for example, a new screen belonging to the diver-
gent routes, which did not appear in the template, is added to
the test scenario template.

In another embodiment, manipulating the test scenario
template according to the divergent routes involves generat-
ing a new test scenario template based on the test scenario
template and one or more of the divergent routes. For
example, elements from the divergent routes are combined
with elements in the existing test scenario template in order to
generate a new template with a combination of elements that
is not possessed by the test scenario template and possibly any
of the divergent routes.

In one embodiment, identifying in the runs divergent routes
in step 373 involves identifying divergent routes that diverge
from the template route and later on converge back to the
template route. Additionally or alternatively, identifying in
the runs divergent routes in step 373 involves identifying
divergent routes that diverge from the template route and do
not converge back to the template route. Additionally or alter-

10

15

20

25

30

35

40

45

50

55

60

65

90

natively, identifying in the runs divergent routes in step 373
involves identitying divergent routes that merge with the tem-
plate route.

In one embodiment, the computer implemented method
includes an additional optional step 378 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, the user interface 368 may be utilized
to present the updated template to the user.

In one embodiment, the computer implemented method
includes an optional step 370, which involves monitoring the
users and providing data obtained from the monitoring for use
in the identifying of the runs of test scenarios.

In another embodiment, the computer implemented
method includes an optional step 377 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes. Optionally,
step 377 also involves testing that the at least two of the
divergent routes are associated with at least two different
organizations.

In one embodiment, the computer implemented method
illustrated in FIG. 35 includes an optional step of ranking the
manipulated test scenario template according to the number
of the divergent routes. Additionally or alternatively, ranking
the manipulated test scenario template may be according to
the number of different organizations associated with the
divergent routes.

FIG. 36 illustrates another embodiment of a computer
implemented method for utilizing divergent routes identified
in runs of test scenarios to manipulate a test scenario tem-
plate. The illustrated embodiment includes the following
steps:

In step 381, identifying runs of test scenarios run by users
belonging to the different organizations on software systems
associated with the different organizations.

In step 382, receiving a certain run of a test scenario instan-
tiated from a first test scenario template; the first test scenario
template defines a first template route that instantiations of
the firsttest scenario template are supposed to follow. Option-
ally, the first template route includes a sequence of one or
more elements involved in running an instantiation of the first
template. Optionally, an element may be a test step, a trans-
action, or a screen.

In step 383, identifying that the certain run follows a certain
divergent route that diverges from the first template route.
Optionally, a divergent route is characterized by a different
sequence of elements compared to sequence of elements
defined by the template route.

In step 384, storing the certain divergent route in the data-
base 358.

In step 385, receiving a second template route belonging to
a second test scenario template; the second test scenario tem-
plate is associated with an organization that does not belong
to the different organizations. Optionally, receiving the sec-
ond template route involves receiving elements included in
the second template route. Additionally or alternatively,
receiving the second template route may involve receiving the
second test scenario template that defines the second template
route. Additionally or alternatively, receiving the second tem-
plate route may involve receiving a run of a test scenario that
follows the second template route, such as a run that is an
instantiation of the second template route.

In step 386, counting number of divergent routes in the
database 358 that are essentially the same as the second
template route.

US 9,317,404 B1

91

And in step 387, if the number reaches a predetermined
threshold, manipulating the test scenario template according
to the divergent routes in the database that are essentially the
same as the second template route. Optionally, the predeter-
mined threshold is selected such that reaching the predeter-
mined threshold indicates that the essentially the divergent
routes are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the number does not reach the predetermined
threshold, step 387 involves refraining from manipulating the
test scenario template according to the divergent routes. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable option for an orga-
nization associated with runs that follow the certain divergent
route. Additionally, a number that does not reach the prede-
termined threshold may indicate that the divergent routes are
too specific, and are likely useful primarily for the organiza-
tions that ran them.

In one embodiment, identifying in the runs divergent routes
in step 383 involves identifying divergent routes that diverge
from the template route and later on converge back to the
template route. Additionally or alternatively, identifying in
the runs divergent routes in step 383 involves identifying
divergent routes that diverge from the template route and do
not converge back to the template route. Additionally or alter-
natively, identifying in the runs divergent routes in step 383
involves identifying divergent routes that merge with the tem-
plate route.

In one embodiment, the computer implemented method
includes an additional optional step 389 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, a user interface may be utilized to
present the updated template to the user.

In one embodiment, the computer implemented method
includes an optional step 380, which involves monitoring the
users and providing data obtained from the monitoring for use
in the identifying of the runs of test scenarios.

In another embodiment, the computer implemented
method includes an optional step 388 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes. Optionally,
step 388 also involves testing that the at least two of the
divergent routes are associated with at least two different
organizations.

In one embodiment, the computer implemented method
illustrated in FIG. 36 includes an optional step of ranking the
manipulated test scenario template according to the number
of'the divergent routes. Additionally or alternatively, ranking
the manipulated test scenario template may be according to
the number of different organizations associated with the
divergent routes.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to utilize divergent routes identified in runs of test scenarios to
manipulate a test scenario template. The computer includes a
processor, and the non-transitory computer-readable medium
stores the following program code:

Program code for identifying runs of test scenarios run by
users belonging to the different organizations on software
systems associated with the different organizations.

Program code for receiving a certain run of a test scenario
run on a software system associated with a certain organiza-
tion that does not belong to the different organizations; the
certain run is instantiated from a test scenario template and

10

15

20

25

30

35

40

45

50

55

60

65

92

the test scenario template defines a template route that instan-
tiations of the test scenario template are supposed to follow.

Program code for identifying that the certain run follows a
certain divergent route that diverges from the template route.

Program code for storing the certain divergent route in a
database.

Program code for counting number of divergent routes in
the database that are essentially the same as the certain diver-
gent route.

And program code for manipulating the test scenario tem-
plate according to the divergent routes in the database that are
essentially the same as the certain divergent route if the num-
ber reaches a predetermined threshold.

In one embodiment, the program code for manipulating the
test scenario template according to the divergent routes
includes program code for updating the test scenario template
according to one or more of the divergent routes.

In another embodiment, the program code for manipulat-
ing the test scenario template according to the divergent
routes include program code for generating a new test sce-
nario template based on the test scenario template and one or
more of the divergent routes.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the test sce-
nario template according to the divergent routes if the number
does not reach the predetermined threshold. Not reaching the
predetermined threshold indicates that the divergent routes
are not likely to be a suitable alternative to the second tem-
plate route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated test
scenario template, and removing the selected value from the
manipulated test scenario template if the selected value does
not appear in runs that follow at least two of the divergent
routes. Optionally, the program code also involves testing that
the at least two of the divergent routes are associated with at
least two different organizations.

In another embodiment, a non-transitory computer-read-
able medium stores program code that may be used by a
computer to utilize divergent routes identified in runs of test
scenarios to manipulate a test scenario template. The com-
puter includes a processor, and the non-transitory computer-
readable medium stores the following program code:

Program code for identifying runs of test scenarios run by
users belonging to the different organizations on software
systems associated with the different organizations.

Program code for receiving a certain run of a test scenario;
the certain run is instantiated from a first test scenario tem-
plate and the first test scenario template defines a first tem-
plate route that instantiations of the first test scenario template
are supposed to follow.

Program code for identifying that the certain run follows a
certain divergent route that diverges from the first template
route.

Program code for storing the certain divergent route in a
database.

Program code for receiving a second template route
belonging to a second test scenario template. The second test
scenario template is associated with an organization that does
not belong to the different organizations.

Program code for counting number of divergent routes in
the database that are essentially the same as the second tem-
plate route.

And program code for manipulating the second test sce-
nario template according to the divergent routes in the data-

US 9,317,404 B1

93

base that are essentially the same as the second template route
if the number reaches a predetermined threshold.

In one embodiment, the program code for manipulating the
second test scenario template according to the divergent
routes includes program code for updating the second test
scenario template according to one or more of the divergent
routes.

In another embodiment, the program code for manipulat-
ing the second test scenario template according to the diver-
gent routes includes program code for generating a new test
scenario template based on the second test scenario template
and one or more of the divergent routes.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the second
test scenario template according to the divergent routes if the
number does not reach the predetermined threshold. Not
reaching the predetermined threshold indicates that the diver-
gent routes are not likely to be a suitable alternative to the
second template route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated
second test scenario template, and removing the selected
value from the manipulated second test scenario template if
the selected value does not appear in runs that follow at least
two of'the divergent routes. Optionally, the program code also
involves testing that the at least two of the divergent routes are
associated with at least two different organizations.

FIG. 37 and FIG. 38 illustrate embodiments of a computer
system configured to utilize routes followed by runs of test
scenarios to manipulate a test scenario template. The illus-
trated embodiments include at least a test identifier 354, a
route analyzer 391, a database 392, a route retriever 393, a
subset selector 394, and a template manipulator 395.

Herein, a route defines a sequence of one or more elements
involved in a run of a test scenario; an element may be a test
step, a transactions, or a screen. Additionally, a test scenario
template may define a template route that instantiations of the
template are supposed to follow. Thus, a run of a test scenario
based on a template is expected to reflect the template route;
for example, the run may describe screens and/or transactions
included in the template route.

The test identifier 354 is configured to identify runs of test
scenarios run by users belonging to different organizations on
software systems associated with the different organizations.
Optionally, the runs are identified from activity data 353
obtained from monitoring the users.

In one embodiment, the route analyzer 391 is configured to
receive a run of a test scenario and to identify a route that the
run follows; the run may be one of the runs identified by the
test identifier 354. Optionally, the route analyzer 391 identi-
fies in the run certain elements that may include test steps
executed while running the test scenario, transactions and/or
businesses executed while running the test scenario, and/or
screens presented to a user running the test scenario. The
certain elements may also be used to describe the route. In this
case, the run may be referred to as “following the route”.

Optionally, the route analyzer 391 may identify multiple
routes that the run follows. For example, the multiple routes
may contain different types of elements; e.g., a first route may
include screens, while a second route may include transac-
tions. Thus, the run be referred to as following both routes.
Additionally or alternatively, the route analyzer 391 may
include in aroute a subset of the elements identified in the run.
For example, the route analyzer 391 may exclude certain

20

30

35

40

45

55

94

screens from a route if those screens are utilized only by one
organization and/or contain primarily proprietary data.

In one embodiment, the database 392 is configured to store
the routes identified by the route analyzer 391. Optionally, at
least some of the functionality of the route analyzer 391 is
performed by the database 392; for example, part of the
identification of routes is performed by software and/or hard-
ware that is part of the database (e.g., running on a server
belonging to the database 392), and/or is controlled by the
database (e.g., a module of the database 392 may control
some of the processes performed by the route analyzer 391).

In one example, each time a route is identified ina run of a
test scenario, the route is stored in the database 392. Option-
ally, storing a route involves storing elements included in the
route, a run of a test scenario that follows the route, informa-
tion pertaining to a user that ran a test scenario that followed
the route, and/or information pertaining to an organization
associated with a run of a test scenario that followed the
divergent route.

In another example, each time a route is identified in a run
of a test scenario, the route analyzer 391 and/or the database
392 determine whether another route essentially the same as
the route has been already stored. If no essentially same route
has already been stored, the route is stored in the database
392.

Optionally, if another essentially same route has already
been stored, then a certain counter associated to the already
stored route is incremented. Optionally, such a counter may
be a counter corresponding to runs following the stored route,
a counter corresponding to users that ran runs following the
stored route, and/or a counter corresponding to organizations
associated with runs following the stored route.

The route retriever 393 is configured to receive a certain
template route 390 belonging to a test scenario template and
to retrieve from the database 392 divergent routes that diverge
from the template route 390. The test scenario template
defines the template route, which is a route that instantiations
of the template are supposed to follow. That is, each run of a
test scenario instantiated from the template is supposed to
reflect a certain sequence of elements, as defined by the route.
Optionally, the route retriever 393 receives the test scenario
template to which the route 390 belongs, and derives the route
390 from the template. Additionally and or alternatively, the
route retriever 393 may receive a representation of the tem-
plate route 390.

Inone embodiment, at least some of the functionality of the
route retriever 393 is performed by the database 392; for
example, part of the identification of divergent routes is per-
formed by software and/or hardware that is part of the data-
base (e.g., running on a server belonging to the database 392),
and/or is controlled by the database (e.g., a module of the
database 392 may control some of the processes performed
by the route retriever 393).

In one embodiment, the test scenario template received by
the route retriever 393 is associated with a certain organiza-
tion that does not belong to the different organizations.
Optionally, a test scenario template may be considered asso-
ciated with an organization if a user belonging to the organi-
zation ran an instantiation of the template and/or is intended
to run an instantiation of the template. Additionally or alter-
natively, a test scenario template may be considered associ-
ated with an organization if the template was generated based
on one or more runs of test scenarios that are associated with
the organization. Optionally, the different organizations and
the certain organization are associated with different fields of
operation (e.g., the different organizations are in the insur-
ance field, while the certain organization is in the field of

US 9,317,404 B1

95

automobile manufacture). Alternatively, the different organi-
zations and the certain organization are associated with a
same field of operation.

Based on the elements included in the template route 390,
the route retriever 393 may identify in the database 392 routes
that diverge from the template route 390, and as such are
considered divergent routes with respect to the template route
390. Optionally, a divergent route that diverges from a tem-
plate route 390 is characterized by a different sequence of
elements compared to sequence of elements defined by the
template route 390. For example, the route retriever 393 may
compare elements in the template route 390 with elements
belonging to runs in the database 392 in order to determine
whether some elements being compared are similar and/or
appear in the same order as the elements in the template route
390.

In one embodiment, the route retriever 393 is configured to
identify divergent routes that diverge from the template route
390 and later on converge back to the template route 390.
Additionally or alternatively, the route retriever 393 may also
be configured to identify divergent routes that diverge from
the template route 390 and do not converge back to the tem-
plate route 390. Additionally or alternatively, the route
retriever 393 may be also configured to identify divergent
routes that merge with the template route 390.

In one embodiment, an essentially exhaustive search is
performed in the database to identify the divergent routes.
Optionally, essentially all routes stored in the database 392
are evaluated and/or considered when searching for the diver-
gent routes.

In another embodiment, searching for the divergent routes
in the database 392 involves evaluating and/or considering a
portion of the routes stored in the database (e.g., randomly
selecting 10% of the routes in the database 392 and examining
them to identify the divergent routes). Optionally, at least
some routes belonging to the portion of the routes represent
other routes (e.g., they are representatives of groups of related
routes). Thus, if a representative route is deemed a divergent
route, or close to being a divergent route, other routes in its
group may be evaluated too.

In another embodiment, searching for the divergent routes
in the database 392 involves filtering routes in the database
according to elements in the template route 390. For example,
the database 392 may be queried for routes that include a
certain element belonging to the template route 390, and only
routes containing the certain element are evaluated.

The subset selector 394 is configured to select from the
divergent routes retrieved by the route retriever 393 a subset
of divergent routes that are similar to each other. Optionally,
the routes belonging to the subset are essentially the same.
Optionally, the subset includes all the divergent routes
retrieved by the route retriever 393. Alternatively, the subset
includes at least one of the divergent routes, and at least one
divergent route is not included in the subset. Optionally, the
subset includes exactly one divergent route; alternatively, the
subset may include two or more divergent routes.

In one embodiment, the subset includes divergent routes
that are similar to each other, according to some measure of
similarity. Optionally, the divergent routes in the subset are
less similar to other divergent routes not in the subset, accord-
ing the measure of similarity. In one example, the software
systems are screen based, and similar divergent routes start
from, and end with, the same screens. In another example, the
software systems are screen based, and similar divergent
routes have the same chain of screens but with different user

10

15

20

25

30

35

40

45

50

55

60

65

96

keys. In still another example, similar divergent routes have
the same changes in relation to the template route from which
they arrived.

In one example, divergent routes belonging to the subset
have a certain number of elements in common. For example,
all divergent routes in the subset share a number of common
screens. In another example, divergent routes belonging to
the subset all have a minimal pairwise similarity between
pairs of divergent routes in the subset. For example, the angle
between a vector representation of any two divergent routes in
the subset is smaller than a certain threshold. In yet another
example, divergent routes returned by the route retriever 393
are clustered and the subset selector 394 selects a certain
cluster of divergent routes as the subset.

In one embodiment, the subset selector 394 compares the
divergent routes retrieved by the route retriever 393 to the
template route 390, and includes in the subset only divergent
routes that show at least a certain level of similarity to the
template route 390. For example, all divergent routes must
share a certain number of elements with the template route
390 (in addition to being similar to each other).

The template manipulator 395 is configured to manipulate
the test scenario template according to the subset of divergent
routes ifthe size of the subset reaches a predetermined thresh-
old. A result of the manipulation may be a manipulated tem-
plate 399. Optionally, the template manipulator 395 is also
configured not to manipulate the test scenario template
according to subset if the size of the subset does not reach the
predetermined threshold.

In one embodiment, the predetermined threshold is
selected to have a certain value that signifies a likelihood of
general usefulness of divergent routes belonging to the sub-
set; thus, the fact that the divergent routes in the subset have a
sufficiently large utilization (as indicated by the size of the
subset), indicates that the divergent routes in the subset are
likely to be useful for other organizations too. If the subset is
too small, this may indicate that the routes in the subset are
utilized by a small number of users and/or organizations, and
thus are not likely useful for other organizations.

In one embodiment, the predetermined threshold may be a
fixed value. For example, a subset of at least two divergent
routes. In another embodiment, the predetermined threshold
may be proportional to various factors such as the number of
the runs of the test scenarios, the number of users that ran the
test scenarios, and/or the number of organizations associated
with the runs of the test scenarios. In one example, the pre-
determined threshold increases with the number of different
organizations, thus for instance, if there are 10 different orga-
nizations the predetermined threshold may be a subset of at
least size 3, but if there are 100 different organizations, the
predetermined threshold may be a subset of at least 10 diver-
gent routes.

In one embodiment, manipulating a test scenario template
by the template manipulator 395 involves updating the tem-
plate so the manipulated template 399 is different from the
template prior to the updating. In one example, updating the
test scenario template may involve adding one or more ele-
ments found in the divergent routes in the subset to the test
scenario template. Optionally, the one or more elements that
are added are part of at least a predetermined proportion of the
divergent routes belonging to the subset (e.g., the added ele-
ments appear in at least 50% of the divergent routes in the
subset). Optionally, the one or more elements that are added
are part of all the divergent routes belonging to the subset. In
another example, updating the test scenario template may
involve removing one or more elements found in the test
scenario template that are not found in the divergent routes in

US 9,317,404 B1

97

the subset. Optionally, the one or more elements that are
removed are not part of at least a predetermined proportion of
the divergent routes belonging to the subset (e.g., the added
elements appear in less than 50% of the divergent routes in the
subset). Optionally, the one or more elements that are remove
do not appear in any of the divergent routes belonging to the
subset. In yet another, updating the test scenario template may
involve changing order of one or more elements found in the
test scenario template, according to an order of elements
found in the divergent routes in the subset.

In another embodiment, manipulating a test scenario tem-
plate by the template manipulator 395 involves generating a
new test scenario template based on the test scenario template
and one or more of the divergent routes in the subset. For
example, the new template may include at least some of the
elements from the test scenario template and at least some
elements from divergent routes belonging to the subset.
Optionally, the new template is generated by copying a per-
vious template and updating the copy.

In one embodiment, the computer system may optionally
include a data cleaner 397 configured to select a value from
the manipulated template 399, and remove the selected value
from the manipulated template 399 if the selected value does
not appear in runs of test scenarios that follow at least two
divergent routes that are essentially the same as the certain
divergent route. Optionally, the data cleaner 397 is also con-
figured to check that the at least two divergent routes are
associated with at least two different organizations. For
example, there is at least a first run of a test scenario that
follows a first registered divergent route that is essentially the
same as the certain divergent route; there is at least a second
run of a test scenario that follow a first divergent route that is
essentially the same as the certain divergent route that follows
a second registered divergent route that is essentially the same
as the certain divergent route. Additionally, a first organiza-
tion is associated with the first run, and a second different
organization, is associated with the second run. Optionally,
the manipulated template 399 may refer to an updated tem-
plate or a newly generated template, depending on what
manipulation the template manipulator 395 is configured to
perform.

In one embodiment, the computer system may also option-
ally include a monitoring module 352 that is configured to
monitor the users 350 belonging to the different organizations
and to provide the activity data 353 obtained from monitoring
the users 350 to the test identifier 354.

In another embodiment, the computer system may also
optionally include a user interface 398 configured to suggest
to a user to run an instantiation manipulated test scenario
template. Optionally, the user interface 398 may initiate the
instantiation of the manipulated test scenario template; for
example, the user interface 398 may present a first screen
belonging to the manipulated test scenario template and
prompt a user to take a certain action to advance execution.

In another embodiment, the computer system may also
optionally include a ranking module 396 configured to rank
templates, such as, the manipulated template 399. Optionally,
ranking the manipulated template 399 is done according to
the size of the subset of divergent routes selected by the subset
selector 394; for example, the larger the subset, the higher the
manipulated template 399 is ranked. In one example, ranking
involves ordering templates according to size of their corre-
sponding subset of divergent routes. In another example,
ranking involves assigning templates scores proportional to
the size of their corresponding subset of divergent routes. In
still another example, ranking involves ordering templates
according to number of different organizations associated

10

35

40

45

55

98

with routes belonging to their corresponding subsets. The
larger the number of organizations associated with runs that
followed divergent routes in a subset, the higher the rank of
the manipulated template 399.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 37
and/or FIG. 38 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
352, the test identifier 354, the route analyzer 391, the data-
base 392, the route retriever 393, the subset selector 394, the
template manipulator 395, the ranking module 396, the data
cleaner 397, and the user interface 398. Optionally, one or
more of the aforementioned components may be imple-
mented on a remote server, such as a cloud-based server.

In one example, the route analyzer 391, the route retriever
393, and/or the subset selector 394 may be implemented, at
least in part, as part of the database 392. For example, they
may involve software modules that belong to the database
392. In another example, the route analyzer 391, the route
retriever 393, and/or the subset selector 394 may be imple-
mented by the same software module that interacts with the
database 392. In yet another example, the ranking module 396
and/or the data cleaner 397 are implemented as part of the
template manipulator 395.

In one embodiment, the test identifier 354, the route ana-
lyzer 391, the database 392, the route retriever 393, the subset
selector 394, and/or the template manipulator 395, are imple-
mented as a cloud-based service that receives the activity data
353 of the users and manipulates templates to better suit the
needs of the users. For example, the manipulated routes may
test elements in a new and/or different way. Optionally, the
ranking module 396 and/or the data cleaner 397 may also be
part of the cloud-based service.

FIG. 39 illustrates one embodiment of a computer imple-
mented method for utilizing routes followed by runs of test
scenarios to manipulate a test scenario template. The illus-
trated embodiment includes the following steps:

In step 401, identifying runs of test scenarios run by users
belonging to different organizations on software systems
associated with the different organizations.

In step 402, receiving a certain run of a test scenario; the
certain run may be one of the runs identified in step 401.

In step 403, identifying a route that the certain run follows.
Optionally, a route defines a sequence of one or more ele-
ments involved in running a test scenario. Optionally, an
element is selected from the group consisting of test steps,
transactions, and screens.

In step 404, storing route in the database 392.

In step 405, receiving a certain template route belonging to
a test scenario template; the test scenario template is associ-
ated with a certain organization that does not belong to the
different organizations. Optionally, the different organiza-
tions and the certain organization are associated with differ-
ent fields of operation. For example, the certain organization
is in the travel business, while the different organizations are
in finances, health services, or automobile manufacturing.
Alternatively, the different organizations and the certain orga-
nization are associated with a same field of operation. For
example, they all operate in the field of internet commerce.

In step 406, retrieving from the database 392 divergent
routes that diverge from the template route. Optionally, a
divergent route is characterized by a different sequence of
elements compared to sequence of elements defined by the
template route. Optionally, the divergent routes involve iden-
tifying routes that diverge from the template route and later on

US 9,317,404 B1

99

converge back to the template route. Additionally or alterna-
tively, retrieving the divergent routes may involve identifying
routes that diverge from the template route and do not con-
verge back to the template route. Additionally or alternatively,
retrieving the divergent routes may involve identifying diver-
gent routes that merge with the template route.

In step 407, selecting from the divergent routes a subset of
divergent routes that are similar to each other.

And in step 408, if the size of the subset reaches a prede-
termined threshold, manipulating the test scenario template
according to the subset. Optionally, the predetermined thresh-
old is selected such that reaching the predetermined threshold
indicates that the essentially the divergent routes belonging to
the subset are also likely to be useful for other organizations.
Optionally, the predetermined threshold is at least two diver-
gent routes.

Optionally, if the size of the subset does not reach the
predetermined threshold, step 408 involves refraining from
manipulating the test scenario template according to the sub-
set. Not reaching the predetermined threshold indicates that
the divergent routes are not likely to be a suitable option for an
organization associated with runs that follow the certain
divergent route. Additionally, a number that does not reach
the predetermined threshold may indicate that the divergent
routes are too specific, and are likely useful primarily for the
organizations that ran them.

In one embodiment, manipulating the test scenario tem-
plate according to the subset involves updating the test sce-
nario template according to one or more of the divergent
routes in the subset; for example, a new screen belonging to
the divergent routes in the subset, which did not appear in the
template, is added to the test scenario template.

In another embodiment, manipulating the test scenario
template according to the subset involves generating a new
test scenario template based on the test scenario template and
one or more of the divergent routes belonging to the subset.
For example, elements from the divergent routes in the subset
are combined with elements in the existing test scenario tem-
plate in order to generate a new template with a combination
of'elements that is not possessed by the test scenario template
and possibly any of the divergent routes in the subset.

In one embodiment, the computer implemented method
includes an additional optional step 410 involving suggesting
to a user to run an instantiation of the updated test scenario
template. For example, the user interface 398 may be utilized
to present the updated template to the user.

In one embodiment, the computer implemented method
includes an optional step 400, which involves monitoring the
users and providing the activity data 353 obtained from the
monitoring for use in the identifying of the runs of test sce-
narios.

In another embodiment, the computer implemented
method includes an optional step 409 that involves selecting
a value from the manipulated test scenario template, and
removing the selected value from the manipulated test sce-
nario template if the selected value does not appear in runs
that follow at least two of the divergent routes belonging to the
subset. Optionally, step 409 also involves testing that the at
least two of the divergent routes are associated with at least
two different organizations.

In one embodiment, the computer implemented method
illustrated in FIG. 39 includes an optional step of ranking the
manipulated test scenario template according to the number
of the divergent routes belonging to the subset. Additionally
or alternatively, ranking the manipulated test scenario tem-

40

45

100

plate may be done according to the number of different orga-
nizations associated with the divergent routes belonging to
the subset.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to utilize routes followed by runs of test scenarios to manipu-
late a test scenario template. The computer includes a proces-
sor, and the non-transitory computer-readable medium stores
the following program code:

Program code for identifying runs of test scenarios run by
users belonging to different organizations on software sys-
tems associated with the different organizations.

Program code for receiving a certain run of a test scenario.

Program code for identifying a route that the run follows.

Program code for storing the route in a database.

Program code for receiving a certain template route
belonging to a test scenario template. Optionally, the test
scenario template is associated with a certain organization
that does not belong to the different organizations.

Program code for retrieving from the database divergent
routes that diverge from the template route.

Program code for selecting from the divergent routes a
subset of divergent routes that are similar to each other.

And program code for manipulating the test scenario tem-
plate according to the subset if the size of the subset reaches
a predetermined threshold.

In one embodiment, the program code for manipulating the
test scenario template according to the subset includes pro-
gram code for updating the test scenario template according
to one or more of the divergent routes belonging to the subset.

In another embodiment, the program code for manipulat-
ing the test scenario template according to the subset includes
program code for generating a new test scenario template
based on the test scenario template and one or more of the
divergent routes belonging to the subset.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for refraining from manipulating the test sce-
nario template according to the subset if the size of the subset
does not reach the predetermined threshold. Not reaching the
predetermined threshold indicates that the divergent routes
belonging to the subset are not likely to be a suitable alterna-
tive to the template route, for other organizations.

In one embodiment, the program code stored in the non-
transitory computer-readable medium optionally includes
program code for selecting a value from the manipulated test
scenario template, and removing the selected value from the
manipulated test scenario template if the selected value does
not appear in runs that follow at least two of the divergent
routes belonging to the subset. Optionally, the program code
also involves testing that the at least two of the divergent
routes are associated with at least two different organizations.

FIG. 40 illustrates one embodiment of a computer system
configured utilize data collected from users belonging to dif-
ferent organizations to select a test scenario template relevant
for testing configuration elements. The illustrated embodi-
ment includes at least a test identifier 422, a first connection
generator 424, a clustering module 425, a second connection
generator 426, a weighting module 427, a cluster selector
428, and a template selector 430.

The test identifier 422 is configured to identify runs of test
scenarios by users 420 belonging to different organizations
on software systems belonging to the different organizations.
Optionally, running the test scenarios is useful for testing
configuration elements of the software systems. For example,
following a system update, many configuration elements may
undergo a change of value. To test the influence of the update,

US 9,317,404 B1

101

users may run test scenarios in order that test various aspects
of the many configuration elements.

The first connection generator 424 is configured to gener-
ate first connections between the configuration elements and
the runs of the test scenarios identified by the test identifier
422. Optionally, a connection between a configuration ele-
ment and a run of a test scenario indicates that running the test
scenario may have been useful for testing the configuration
element.

In one embodiment, the first connection generator 424
receives information indicating, for some of the configuration
elements, which runs of test scenarios are related to the con-
figuration elements. In one example, runs of test scenarios
may include data fields indicating which configuration ele-
ments they are intended to test. Optionally, the data fields are
added by a designer of the test scenario. In another example,
the first connection generator 424 receives a table that lists
identifiers of runs of test scenarios that were run to test each
configuration element.

In another embodiment, the first connection generator 424
analyzes runs of test scenarios, and from the analysis the first
connection generator 424 is able to learn of one or more
configuration elements that may have been involved and/or
affected the system during the running of the test scenarios.
These identified elements may be connected, by first connec-
tions, to the runs in which they were found.

In one example, the first connection generator 424 utilizes
text analysis of a run of a test scenario, such as analyzing code
belonging to a test scenario being run, input provided for
running the test scenario, and/or output files, such as log files,
generated when running the test scenario. The text analysis
searches for certain names and/or values that are part of
configuration elements (e.g., file paths, business process
names). If such names and/or values are found, the corre-
sponding configuration elements may be connected with the
run of the test scenario with first connections.

In another example, the first connection generator 424
utilizes static analysis of code utilized for running a test
scenario in order to identify one or more configuration ele-
ments that may be tested by running the test scenario. The
static analysis may reveal if certain business processes, pro-
grams, and/or transactions are to be executed in various con-
trol flows of the code. If the certain business processes, pro-
grams, and/or transactions are linked to the one or more
configuration elements, then the one or more configuration
elements may be linked to runs of the test scenario with first
connections. For example, a configuration element may indi-
cate that a certain transaction should be performed if updating
a database fails; if static analysis reveals that a test scenario
may perform the certain transaction under certain conditions,
a first connection may be made between the configuration
element and a run of the test scenario.

In yet another example, the first connection generator 424
utilizes dynamic analysis of performed while running a test
scenario in order to identify one or more configuration ele-
ments that may be tested by running the test scenario. Option-
ally, arun ofthe test scenario includes data collected while the
dynamic analysis was performed. Analyzing the dynamic
analysis data may reveal which transactions, business pro-
cesses, and/or system resources were involved in the run of
the test scenario. If the transactions, business processes, and/
or system resources correspond to specific configuration ele-
ments, the specific configuration elements are connected to
the run of the test scenario via first connections.

The clustering module 425 is configured to cluster the runs
of test scenarios identified by the test identifier 422 into
clusters comprising similar runs of test scenarios. Optionally,

20

40

45

102

the clustering is based on similarity between the runs of the
test scenarios. Optionally, the clustering is based on similarity
between configuration elements associated with the runs of
the test scenarios. For example, the clustering may utilize
similarities between configuration files of systems on which
the test scenarios were run, in order to help determine a
placement of runs into clusters.

The second connection generator 426 is configured to gen-
erate, based on the first connections, second connections
between the configuration elements and the clusters. For
example, if a first connection exists between a certain con-
figuration element and a certain run, and in addition, the
certain run belongs to a certain cluster, then the second con-
nection generator 426 may generate a second connection
between the certain configuration element and the certain
cluster.

FIG. 42 illustrates a process in which second connections
are generated by the second connection generator from first
connections and results of clustering. The first connection
generator generates first connections 438 between n configu-
ration elements 435 (E,, . . ., E,)) and p runs of test scenarios
436 (R,,...,R)). Additionally, clustering the runs 436 yields
qclusters 437 (C,, . . ., C,). In the figure, the assignments of
runs to clusters are denoted by arrows 439. Thus, the runs 436
serve as linkers between the configuration elements 435 and
the clusters 437. The second connection generator removes
these linker, and makes direct second connections 440
between the configuration elements 435 and the clusters 437.

In one embodiment, a second connection is made between
a configuration element and a cluster, if there exists at least
one first connection between the configuration element and a
certain run, and certain run belongs to the cluster. For
example, in FIG. 42, a second connection may be made
between a configuration element of the elements 435 and a
cluster from the clusters 437 if there is an arrow between the
configuration element and a certain run from the runs 436,
and another arrow between the certain run and the cluster.

In one embodiment, in order to form a second connection
between a configuration element and a cluster, the configu-
ration element needs to be linked to the cluster via a number
of different runs that reaches a threshold. For example, in
FIG. 42, a second connection may be made between a con-
figuration element of the elements 435 and a cluster from the
clusters 437 if the number of runs in the set 436 that have both
arrows from the element to them, and arrows from them to the
cluster, reaches the threshold. Optionally, the threshold
depends on the size ofthe cluster, e.g., the larger the size of the
cluster, the higher the threshold.

In one embodiment, the weighting module 427 is config-
ured to weight the second connections based on number of
different users that acted according to each second connec-
tion. As used herein, a user is said to act according to a second
connection, between a configuration element and a cluster, if
there is a run of a test scenario that links between the con-
figuration element and the cluster. A run is considered to link
between a certain configuration element and a certain cluster
if the certain configuration element is connected to the run via
a first connection, and the run belongs to the certain cluster.

Additionally or alternatively, for the purpose of weighting,
the weighting module 427 may take into account the number
of'organizations that are associated with a second connection.
An organization may be considered associated with a second
connection between a configuration element and a cluster, if
a user that belonging to the organization ran a test scenario
that produced a run that links between the configuration ele-
ment and the cluster.

US 9,317,404 B1

103

In one embodiment, the weighting module 427 is config-
ured to weight the second connections according to an
increasing weight scale that depended on the number of users
that acted according to each second connection. Herein, it is
said that a user acts according to a second connection, if the
second connection is between a certain configuration element
and a certain cluster, and the user ran a test scenario that links
between the certain configuration element and the certain
cluster. Optionally, the weighting module 427 assigns a first
instance of a second connection, with a number of users that
acted according to it that is greater than number of users that
acted according to a second instance of a second connection,
a weight that is not lower than weight assigned to the second
instance of a second connection. The higher the weight of a
second connection between a configuration element and a
cluster, the higher likelihood that the cluster contains a run
relevant for testing the certain configuration element.

The cluster selector 428 is configured to receive certain
configuration elements 429 associated with a certain software
system, which are to be tested by a certain user. For example,
the certain user needs to run test scenarios to evaluate the
effect of'the certain configuration elements 429 on the certain
software elements. In one example, the certain configuration
element involves 429 a change to a certain value, and the test
scenarios are to be run in order to verify that there are not
adverse effects due to the change. Optionally, the certain
software system is associated with a certain organization that
does not belong to the different organizations.

In one embodiment, the certain configuration elements 429
are selected from the configuration elements for which sec-
ond connections were generated. Optionally, the certain con-
figuration elements 429 include all the configuration ele-
ments for which second connections were generated.
Optionally, the certain configuration elements 429 include at
least one configuration element for which a second connec-
tion was generated, i.e., there is at least one second connec-
tion linking an element from the certain elements with a
cluster.

The cluster selector 428 is configured to select a certain
cluster of runs of test scenarios, based on a subset of the
certain configuration elements 429 and the second connec-
tions.

The size of the subset of the certain configuration elements
429 may vary. In one example, the size of the subset is one,
i.e., the subset contains a single configuration element. In
another example, the subset contains all of the certain con-
figuration elements 429. In yet another example, the subset
includes some of the certain configuration elements 429, but
not all of them.

Selecting the certain cluster based on a subset of multiple
elements may have advantages in some embodiments. For
example, configuration elements and/or values of elements
are often related, correlated, and/or typically used together.
Thus, being able to select a cluster based on multiple elements
belonging to the subset, may enable a selection of a cluster
that has runs that address combinations of elements as they
may be typically used. Another advantage of selecting the
certain cluster according to a subset that includes multiple
elements is a reduction in the work and time required for
testing. In one example, a cluster selected according to a
subset may be assumed to test some aspects of all elements in
the subset; thus, each instantiation of a template representing
that cluster may simultaneously test multiple configuration
elements. This can help reduce the number of test scenarios
that need to be run in order to test the certain configuration
elements.

10

15

20

25

30

35

40

45

50

55

60

65

104

In one embodiment, it is required for there to be one or
more second connections between elements belonging to the
subset of the certain configuration elements 429 and the cer-
tain cluster, for the cluster selector 428 to be able to select the
certain cluster. Additionally, each element belonging to the
subset should be connected to the certain cluster by at least
one second connection. Alternatively, in another embodi-
ment, there needs to be at least one second connection
between one of the elements belonging to the subset and the
certain cluster.

In one embodiment, the subset of certain configuration
elements includes an element whose value has changed, and
there is at least one second connections between the element
whose value has changed and the certain cluster. For example,
the certain cluster contains a run of a test scenario that was
utilized to test effects the element whose value has changed
on performance of a computer system.

In one embodiment, selecting the certain cluster by the
cluster selector 428 involves determining that second connec-
tions between the elements belonging to the subset and the
certain cluster meet a certain criterion. Optionally, if the
subset contains a single element, the connections between the
elements belonging to the subset and the certain cluster may
consist of a single second connection.

The criterion may be derived from various factors such the
size of the certain cluster, the number of elements in the
subset, the number of second connections between elements
in the subset and the certain cluster, and/or the weight of the
second connections between elements in the subset and the
certain cluster.

In one embodiment, the certain cluster is selected if the
sum of weights second connections, connecting between ele-
ments in the subset and the certain cluster, reaches a thresh-
old. Optionally, the threshold is a predetermined threshold,
e.g., the value of the threshold and/or logic used to compute
the threshold is known a priori. Optionally, the value of the
threshold depends on the size of the certain cluster; for
example, the larger the cluster, the higher is the threshold.
Optionally, the value of the threshold may depend on the size
of'the subset; for example, the larger the subset, the higher is
the threshold.

In one embodiment, the threshold represents at least two
different users that acted according to at least one of the
second connections connecting between elements in the sub-
set and the certain cluster. That is, for the purpose of comput-
ing the sum of the weights of second connections connecting
between elements in the subset and the certain cluster, each
user is counted only once. Thus, there needs to be among
second connections connecting between elements in the sub-
set and the certain cluster, at least a first instance of a second
connection which a first user acted upon, and at least a second
instance of a second connection that a second user acted upon.
Note that the first instance may be the same second connec-
tion as the second instance, but the first user is not the second
user.

In another embodiment, the threshold represents at least
two different users, associated with at least two different
organizations, that acted according to at least one of the
second connections connecting between elements in the sub-
set and the certain cluster. That is, for the purpose of comput-
ing the sum of the weights of the second connections con-
necting between elements in the subset and the certain cluster,
each user is counted only once, and each organization is
counted only once. Thus, there needs to be among the second
connections connecting between elements in the subset and
the certain cluster, at least a first instance of a second connec-
tion which a first user, belonging to a first organization, acted

US 9,317,404 B1

105

upon, and at least a second instance of a second connection
that a second user, belonging to a second organization, acted
upon. Note that the first instance may be the same second
connection as the second instance, but the first user is not the
second user, and the first organization is not the second orga-
nization.

One advantage of having the sum of weights of the second
connections connecting between elements in the subset and
the certain cluster reach the threshold is that reaching the
threshold may indicate a desired level of usage. A high weight
of'a second connection between an element and a cluster may
be indicative, in some embodiments, of a large number of
users and/or large number of users from different organiza-
tions, that utilize runs in the cluster to test the connection.
Thus, high weights of second connections between a subset
and a cluster may be indicative of the fact that the cluster is
widely used to test elements in the subset. This may be indica-
tive of the general usefulness of the cluster; such a cluster is
likely to be useful for other organizations too.

In another embodiment, the certain cluster is selected
according to other criteria that involve weights of second
connections between elements in the subset and the certain
cluster. In one example, there is threshold regarding a mini-
mal weight that all second connections between elements in
the subset and the certain connection need to exceed.

While performing its selection, the cluster selector may
utilize an objective function that evaluates a subset of the
certain configuration elements with respect to a cluster. For
example, the objective function may be the sum of weights of
second connections that exist between Optionally, the certain
cluster that is selected is one for which a subset exists, such
that the objective function for the subset and the certain clus-
ter is maximal compared to objective function values
obtained when using other subsets and/or other clusters.
Optionally, the certain cluster that is selected is one for which
a subset exists, such that the objective function for the subset
and the certain cluster exceeds a certain threshold.

FIG. 43 illustrates a selection of the certain cluster. The
certain configuration elements 441 include multiple configu-
ration elements (including the subset 443 that includes the
elements E, and E,,. The second connection 440 connect
between configuration elements 435 (that include the certain
configuration elements 441), and the clusters 437. A certain
cluster C, 442 is found such that the subset 443 that contains
the elements E, and E,,, has connections between the ele-
ments of the subset 443 and the certain cluster 442 for which
the sum of weights reaches a threshold. As illustrated in FIG.
43, the sum of the weight of the connection between element
E, and the certain cluster C, and the weight of the connection
between element E,, and the certain cluster C, reaches the
threshold.

In one embodiment, there may be a specific element
belonging to the certain configuration elements 429 for which
there is no second connection that connects between the spe-
cific element and any cluster. Optionally, the specific element
may be marked as lacking a cluster from which a template
may be suggested.

In another embodiment, there is a specific second connec-
tion between a specific object an the certain cluster; however,
no subset of the certain configuration elements 429 may be
found that both includes the specific element, and the sum of
weights of the specific second connection and possibly one or
more other second connections, connecting between ele-
ments in the subset and the certain cluster, reaches the thresh-
old. Optionally, the specific element may be marked as being
non-associated or “not covered” by the certain cluster.

10

15

20

25

30

35

40

45

50

55

60

65

106

Selecting the certain cluster may involve a search that
needs to be performed among the clusters, among the possible
subsets of the certain configuration elements 429, and/or in
the space of possible pairs that include a subset and a cluster.
Optionally, the search utilizes an objective function whose
value depends on a subset and cluster being evaluated.
Optionally, the search is guided by an attempt to find a cluster
and subset that together maximize the objective function
value. Those skilled in the art may recognize, that there are
various algorithmic approaches that may be used in this opti-
mization problem, such as, exhaustive search, forward or
backward selection algorithms, genetic algorithms, simu-
lated annealing, branch-and-bound searches, integer pro-
gramming, or other convex optimization approaches.

In one embodiment, the cluster selector 428 selects the
certain cluster to achieve a desired coverage of tests related to
the certain configuration elements 429. For example, each
element of the certain configuration elements 429 may
require a certain number and/or combination of test scenarios
to be run in order to verify the effects of the element on the
system. Thus, the selection of the certain cluster may be
guided by the desire to run the required test scenarios for as
many elements. In one example, the cluster selector is more
likely to select a subset that includes elements for which a
requirement of test scenarios has not been met. Additionally
or alternatively, once the requirement of test scenarios has
been met for an element, it is less likely to be part of the subset
considered by the cluster selector when selecting the certain
cluster. Optionally, details regarding extent at which testing
requirements of elements have been met are factored in to an
objective function that is used by the cluster selector 428 to
evaluate subsets and clusters when selecting the certain clus-
ter.

In one embodiment, the certain cluster includes runs asso-
ciated with different organization. For example, the certain
cluster includes a first run associated with a first organization
belonging to the different organizations and a second run
associated with a second organization belonging to the dif-
ferent organizations. Additionally, the first organization is not
the second organization. Optionally, having runs from mul-
tiple organizations is indicative of wide use of the cluster, and
high likelihood that a template representing the cluster may
be useful for other organizations. Additionally, having runs
associated with multiple organizations may assist in selecting
default values for a template generated based on the runs in
the cluster, and/or it may assist in detecting and/or removing
proprietary data from the template.

The template selector 430 is configured to select for the
certain user a test scenario template representing the certain
cluster. Optionally, usage information received by the tem-
plate selector indicates numbers of users and/or organizations
that utilized templates representing the certain cluster; thus,
the template selector 430 may be able to select a template
known to be utilized by a large number of users and/or orga-
nizations. Optionally, the template selector 430 may receive a
profile of the certain user and select an appropriate template
based on the profile.

In one embodiment, selecting the test scenario template for
the certain user is guided by impact of elements in the subset
of the certain configuration elements 429 on runs of test
scenarios belonging to the certain cluster. Optionally, impact
of'elements in the subset is determined by ability influence of
the elements on an outcome of running test scenarios. For
example, changing a value of a certain configuration element
may alter the control flow of the execution (e.g., cause differ-
ent transaction to be executed). In another example, a new
configuration element may cause a system error, which may

US 9,317,404 B1

107

dramatically change the outcome of a run. Optionally, the
impact may be determined by static analysis of the test sce-
narios and/or runs of test scenarios that belong to the certain
cluster. For example, static analysis may help determine if
there are transactions in the test scenarios that depend on the
configuration elements in the subset and/or the extent of the
dependence. Optionally, the impact may be determined by
dynamic analysis of runs of the test scenarios belonging to the
certain cluster. For example, the control flow and/or data flow
of the runs may be examined to generate a list of system
components, transactions, and/or programs that are involved
in each run; by comparing the list with the subset, it may be
determined which runs are impacted by which elements
belonging to the subset.

In one embodiment, the template selector 430 receives
information regarding which runs of test scenarios were uti-
lized to generate templates representing the certain cluster.
Based on this information, along with information regarding
impact of elements from the subset on runs belonging to the
certain cluster, a template representing the certain cluster that
is likely to be impacted by elements in the subset is selected.

In one embodiment, the computer system optionally
includes a template generator 432 that is configured to gen-
erate the test scenario template based on one or more runs of
test scenarios belonging to the certain cluster. Optionally, the
template selector 430 selects the test scenario template for the
certain user from among templates generated by the template
generator 432. Optionally, the template selector 430 and the
template generator 432 are implemented, in least in part, by
the same software component. Optionally, the template gen-
erator 432 relies on information obtained from the template
selector 430 to determine which templates to generate.

In one embodiment, the template generator 432 receives
information regarding impact of elements from the subset on
runs belonging to the certain cluster. Based on the informa-
tion, the template generator 432 selects one or more runs from
the certain cluster to be utilized in order to generate the
template representing the certain cluster. Thus, template rep-
resenting the certain cluster is one that is likely to be impacted
by elements belonging to the subset. For example, changing
values of configuration elements in the subset may have a
noticeable impact on the running of instantiations of template
representing the certain cluster.

In one embodiment, the computer system includes a moni-
toring module 421 that is configured to monitor the users 420
running the test scenarios on the software systems that belong
to the different organizations and to provide data obtained
from the monitoring to the test identifier 422.

In another embodiment, the computer system includes a
user interface 434 configured to suggest to the certain user to
run an instantiation of the test scenario template.

In one embodiment, the template selector 430 is configured
to provide the certain user an indication of the number of
different users who acted according to second connections
between elements in the subset and the certain cluster.
Optionally, the indication is provided via the user interface
434. Optionally, the more different users acted according the
second connections, the higher the likelihood that the certain
cluster is relevant to the certain user.

In another embodiment, the template selector 430 is con-
figured to provide the certain user an indication of the number
of different users who acted according to a specific second
connection between a specific element in the subset and the
certain cluster. Optionally, the indication is provided via the
user interface 434. Optionally, the more different users acted
according the specific second connection, the higher the like-
lihood that the certain cluster is relevant to the certain user.

10

15

20

25

30

35

40

45

50

55

60

65

108

In one embodiment, the certain software system is a SAP
ERP. Optionally, the configurations elements involve data-
base tables. Monitoring the users involves monitoring
executed transactions (e.g., queries and returned values). The
first connections are connections between database tables and
SQL statements, executed in runs of the test scenarios, which
access the database tables.

In another embodiment, the certain software system is an
Oracle ERP. Optionally, the configuration elements involve
customization code. Monitoring the users involves monitor-
ing executed procedures. The first connections are connec-
tions between customization code and runs of test scenarios
that execute the customization code.

In one embodiment, the template selector 430 is also con-
figured to rank the test scenario template. For example, rank-
ing the template may involve assigning the template a score
and/or positioning the template in a certain ordering of tem-
plates. Optionally, ranking the template is done according to
the sum of the weights of the second connections connecting
between the subset and the certain cluster; the higher the sum,
the higher the template is ranked. Optionally, ranking the
template is done according to the number of different orga-
nizations associated with the second connections between the
subset and the certain cluster; the larger the number of differ-
ent organizations, the higher the template is ranked.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 40 in
different ways. For example, in some embodiments one or
more of the following may be implemented by the same
software module and/or software modules running on the
same processor: the monitoring module 421, the test identifier
422, the first connection generator 424, the clustering module
425, the second connection generator 426, the weighting
module 427, the cluster selector 428, the template selector
430, and the template generator 432. Optionally, one or more
of'the aforementioned components may be implemented on a
remote server, such as a cloud-based server.

Inone example, the first connection generator 424 is imple-
mented as part of the test identifier 422. In another example,
the weighting module 427 is implemented as part of the
second connection generator. In another example, the cluster
selector 428 and the template selector 430 are implemented,
at least in part, by the same software module.

FIG. 41 illustrates one embodiment of a computer imple-
mented method for utilizing data collected from users belong-
ing to different organizations to select a test scenario template
relevant for testing configuration elements. The illustrated
embodiment includes the following steps:

In step 689, identifying runs of test scenarios run by users
belonging to different organizations on software systems
belonging to the different organizations; running the test sce-
narios is useful for testing configuration elements of the soft-
ware systems.

In step 690, generating first connections between the con-
figuration elements and the runs.

In step 691, clustering the runs of test scenarios to clusters
comprising similar runs. Optionally, the clustering is done at
least in part, according to configuration elements associated
with the runs (as indicated by the first connections).

In step 692, generating, based on the first connections,
second connections between the configuration elements and
the clusters.

In step 693, weighting the second connections based on
number of different users that acted according to each second
connection; the larger the number of users that acted accord-
ing to a connection, the higher the weight of the connection

US 9,317,404 B1

109

and the higher the likelihood that the connection is relevant
for checking its associated configuration element.

Optionally, weighting the second connections is done
according to an increasing weight scale which assigns a first
instance of a second connection, with a number of users that
acted according to it that is greater than number of users that
acted according to a second instance of a second connection,
a weight that is not lower than weight assigned to the second
instance of a second connection; the higher the weight of a
second connection between a configuration element and a
cluster, the higher likelihood that the cluster contains a run
relevant for testing the certain configuration element.

In step 694, receiving the certain configuration elements
429, which are associated with a certain software system, and
which are to be tested by a certain user. Optionally, the certain
software system is associated with a certain organization that
does not belong to the different organizations.

In step 695, selecting a certain cluster based on a subset of
the certain configuration elements and the second connec-
tions. Optionally, selecting the certain cluster also involves
identifying the subset. The selection of the certain subset is
based on weights of the second connections. For the certain
cluster, sum of weights of second connections, between ele-
ments in the subset and the certain cluster, must reach a
threshold. Optionally, the threshold is proportional to the
number of configuration elements in the subset.

Additionally, each element in the subset should be con-
nected to the certain cluster by a second connection. Option-
ally, the certain cluster includes a first run associated with a
first organization belonging to the different organizations and
a second run associated with a second organization belonging
to the different organizations. Additionally, the first organi-
zation is not the second organization.

And instep 697, selecting for the certain user a test scenario
template representing the certain cluster.

In one embodiment, the threshold represents at least two
different users that acted according to at least one of the
second connections connecting between elements in the sub-
set and the certain cluster. Alternatively or additionally, the
threshold may represent at least two different users, associ-
ated with at least two different organizations, that acted
according to at least one of the second connections connect-
ing between elements in the subset and the certain cluster.

In one embodiment, the computer implemented method
may include optional step 688 which involves monitoring the
users 420 running the test scenarios on the software systems
that belong to the different organizations and providing data
obtained from the monitoring to be used for the identifying of
the runs.

In one embodiment, the computer implemented method
may include optional step 698 which involves suggesting to
the certain user to run an instantiation of the test scenario
template. For example, suggesting may be done via the user
interface 434.

In one embodiment, the computer implemented method
includes optional step 696 which involves generating the test
scenario template based on one or more runs of test scenarios
belonging to the certain cluster. Optionally, the template is
generated from one or more runs of test scenarios that are
selected from the certain cluster. Optionally, selecting the one
or more runs is based on received information relating to
impact of configuration elements belonging to the subset on
runs of test scenarios belonging to the certain cluster.

In one embodiment, the subset of the certain configuration
elements includes an element whose value has changed, and
at least one of the second connections connecting between

20

25

30

40

45

50

55

110

elements in the subset and the certain cluster corresponds to
the element whose value has changed.

In one embodiment, the subset contains a single configu-
ration element. Additionally or alternatively, the subset may
include all the configuration elements associated with the
certain software system.

In one embodiment, the method includes an optional step
of providing the certain user an indication of the number of
different users who acted according to second connections
between elements in the subset and the certain cluster.
Optionally, the indication is provided via the user interface
434. Optionally, the more different users acted according the
second connections, the higher the likelihood that the certain
cluster is relevant to the certain user.

In another embodiment, the method includes an optional
step of providing the certain user an indication of the number
of different users who acted according to a specific second
connection between a specific element in the subset and the
certain cluster. Optionally, the indication is provided via the
user interface 434. Optionally, the more different users acted
according the specific second connection, the higher the like-
lihood that the certain cluster is relevant to the certain user.

In one embodiment, the clustering of the runs involves
clustering the runs according to configuration elements asso-
ciated with the runs. That is, at least some portion of notion of
similarity between two runs of test scenarios is determined
according to configuration elements associated with each of
the two runs. In one example, the configuration elements
associated with each of the two runs are configuration files
belonging to the systems on which the respective test sce-
narios were run. In another embodiment, clustering of the
runs involves clustering according to input or output values in
the runs, which are directly or indirectly related to the con-
figuration elements.

In one embodiment, weighting the second connections is
based on number of different organizations that have users
that both belong to the organizations and have acted accord-
ing to the second connections. For example, second connec-
tion that have users from many organizations that acted
according to them, receive a higher weight than second con-
nections with the same number of users that acted according
to them, but the user come from fewer organizations.

In one embodiment, the computer implemented method
includes an optional step of ranking the test scenario template
in proportion to the sum of the weights of the second connec-
tions connecting between elements in the subset and the cer-
tain cluster.

In another embodiment, the computer implemented
method includes an optional step of ranking the test scenario
template in proportion to number of different organizations
associated with the certain second connection.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to utilize data collected from users belonging to different
organizations to select a test scenario template relevant for
testing configuration elements. The computer includes a pro-
cessor, and the non-transitory computer-readable medium
stores the following program code:

Program code for identifying runs of test scenarios run by
users belonging to different organizations on software sys-
tems belonging to the different organizations. Optionally,
running the test scenarios is useful for testing configuration
elements of the software systems.

Program code for generating first connections between the
configuration elements and the runs of the test scenarios.

Program code for clustering the runs to clusters that
include similar runs.

US 9,317,404 B1

111

Program code for generating, based on the first connec-
tions, second connections between the configuration ele-
ments and the clusters.

Program code for weighting the second connections based
on number of different users that acted according to each
second connection.

Program code for receiving certain configuration elements
associated with a certain software system, which are to be
tested by a certain user. Optionally, the certain software sys-
tem is associated with a certain organization that does not
belong to the different organizations

Program code for selecting a certain cluster based on a
subset of the certain configuration elements and the second
connections; each element in the subset is connected to the
certain cluster by a second connection and sum of weights of
second connections, connecting between elements in the sub-
set and the certain cluster, reaches a threshold.

Optionally, the certain cluster includes a first run associ-
ated with a first organization belonging to the different orga-
nizations and a second run associated with a second organi-
zation belonging to the different organizations. Additionally,
the first organization is not the second organization.

And program code for selecting for the certain user a test
scenario template representing the certain cluster.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
users running the test scenarios on the software systems that
belong to the different organizations and program code for
providing data obtained from the monitoring to be used for
the identifying of the runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for suggesting to the
certain user to run an instantiation of the test scenario tem-
plate.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for generating the
test scenario template based on the second connections con-
necting between elements in the subset and the certain cluster.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for providing the
certain user an indication of the number of different users who
acted according to the second connections connecting
between the subset and the certain cluster. Optionally, the
more different users acted according to the second connec-
tions connecting between elements in the subset and the cer-
tain cluster, the higher the likelihood that the second connec-
tions connecting between elements in the subset and the
certain cluster are relevant to the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting the
second connections based on number of different organiza-
tions which have users that belong to them that acted accord-
ing to the second connections.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for ranking the test
scenario template in proportion to the weight of the second
connections connecting between elements in the subset and
the certain cluster.

FIG. 44 illustrates one embodiment of a computer system
configured select a test scenario template relevant for testing
a configuration change. The illustrated embodiment includes
at least a test identifier 452, and interface 461, a first cluster-
ing module 462, a second clustering module 465, a connec-
tion generator 466, a weighting module 467, a connection
selector 468, and a template selector 470.

The test identifier 452 is configured to identify runs of test
scenarios by users 450 belonging to different organizations

20

30

40

45

65

112

on software systems belonging to the different organizations.
Optionally, running the test scenarios is useful for testing
configuration changes to the software systems. For example,
following configuration changes configuration elements may
undergo a change of value. To test the influence of the con-
figuration changes, users may run test scenarios in order that
test various aspects of the related software systems and/or
behaviors of the software system under various conditions.

The interface 461 is configured to receive data 460 indica-
tive of configuration changes made to the software systems of
the different organizations. Optionally, the received data 460
includes a list of configuration changes, such as a list of
configuration elements and/or values related elements.
Optionally, the data includes configuration elements along
with their new values.

In one embodiment, the data 460 received by the interface
461 includes a new configuration file. By comparing the new
configuration file to a previous configuration file, the configu-
ration changes are deduced.

In one embodiment, each data item the interface 461
receives relates to configuration changes of a single organi-
zation belonging to the different organizations. For example,
a data item may be a configuration file associated with a
software system belonging to one organization of the differ-
ent organizations.

The first clustering module 462 is configured to cluster the
configuration changes into clusters of similar configuration
changes. Optionally, clusters of similar configuration
changes include configuration changes that deal with the
same, or similar, configuration elements. Optionally, clusters
of similar configuration changes include configuration
changes that are associated with similar values (e.g., the val-
ues are related to certain configuration elements). Optionally,
clusters of similar configuration changes include configura-
tion changes that are associated with the same, or similar,
configuration elements and also are associated with same, or
similar, values.

The second clustering module 465 is configured to cluster
the runs to clusters that include similar runs. Optionally, the
clustering is based on similarity between the runs of the test
scenarios. Optionally, the clustering is based on similarity
between configuration elements associated with the runs of
the test scenarios. For example, the clustering may utilize
similarities between configuration files of systems on which
the test scenarios were run, in order to help determine a
placement of runs into clusters.

In one embodiment, each of the clusters of similar runs
contains runs associated with at least a predetermined number
of organizations. For example, each cluster includes runs
from at least two different organizations.

The connection generator 466 is configured to generate
connections between the clusters of similar configuration
changes and the clusters of similar runs. Optionally, the con-
nections are generated, at least in part, based on information
indicating for at least some of the runs of test scenarios which
configuration changes they are intended to test. In one
example, a connection between a cluster of similar configu-
ration changes and a cluster of similar runs may be made if
there is a run of a test scenario belonging to the cluster of runs
that was run to test a configuration change belonging to the
cluster of similar configuration changes. In another example,
a connection between a cluster of configuration changes and
a cluster of runs may be made if there are at least a predeter-
mined number of runs belonging to the cluster of runs that
were run to test one or more configuration changes belonging
to the cluster of configuration changes. In yet another
example, a connection between a cluster of configuration

US 9,317,404 B1

113

changes and a cluster of runs may be made if there are one or
more runs belonging to the cluster of runs that were run to test
a predetermined number of configuration changes belonging
to the cluster of configuration changes.

In one embodiment, the connection generator 466 receives
information indicating, for some of the configuration
changes, which runs of test scenarios are related to the con-
figuration changes (e.g., which runs were run to test which
changes). In one example, runs of test scenarios may include
data fields indicating which configuration changes they are
intended to test. Optionally, the data fields may be added (e.g.,
automatically generated) by a designer of the test scenario. In
another example, the connection generator 466 receives a
table that lists identifiers of runs of test scenarios that were run
to test a configuration change.

In another embodiment, the connection generator 466 ana-
lyzes runs of test scenarios, and from the analysis the connec-
tion generator 466 is able to learn of one or more configura-
tion elements that have changed, and may have been involved
in the running of the test scenarios.

In one example, the connection generator 466 utilizes text
analysis of a run of a test scenario, such as analyzing code
belonging to a test scenario being run, input provided for
running the test scenario, and/or output files, such as log files,
generated when running the test scenario. The text analysis
searches for certain names and/or values that are part of
configuration elements (e.g., file paths, business process
names) that may have undergone a change.

In another example, the connection generator 466 utilizes
static analysis of code utilized for running a test scenario in
order to identify one or more configuration changes that may
have been tested by running the test scenario. The static
analysis may reveal if certain business processes, programs,
and/or transactions are to be executed in various control paths
of'the code. If the certain business processes, programs, and/
or transactions are linked to the one or more configuration
changes, then the one or more configuration changes may be
linked to runs of the test scenario. For example, a configura-
tion change may indicate that a certain transaction should be
performed if updating a database fails; if static analysis
reveals that a test scenario may perform the certain transac-
tion under certain conditions, a connection may be made
between the configuration change and a run of the test sce-
nario.

In yet another example, the connection generator 466 uti-
lizes dynamic analysis performed while running a test sce-
nario in order to identify one or more configuration changes
that may be being tested by running the test scenario. Option-
ally, arun ofthe test scenario includes data collected while the
dynamic analysis was performed. Analyzing the dynamic
analysis data may reveal which transactions, business pro-
cesses, and/or system resources were involved in the run of
the test scenario. If the transactions, business processes, and/
or system resources correspond to specific configuration
changes, then the connection generator 466 may connect the
specific configuration changes to the run of the test scenario.

In one embodiment, the connection generator 466 receives
indications regarding one or more configuration changes of
interest at a given point of time (e.g., one or more elements
that have been added or changed not long before the point of
time). Operating under the assumption that runs of test sce-
narios that were run directly after the point of time are done in
order to test the one or more configuration changes, the con-
nection generator 466 connects between the one or more
configuration changes and the runs of the test scenarios that
were run directly after the point of time.

20

40

45

114

In one embodiment, the weighting module 467 is config-
ured to weight the connections generated by the connection
generator 466 based on number of different organizations
associated with each of the connections. An organization may
be considered associated with a connection between a cluster
of similar configuration changes and a cluster of similar runs
if a run of a test scenario, from the cluster of similar runs, is
run by a user belonging to the organization to test a configu-
ration change from the cluster of similar configurations
changes. In one example, the more organizations associated
with a connection, the higher the connection is weighted by
the weighting module 467.

In another embodiment, the weighting module 467 may
weight connections, at least in part, according to the number
of users associated with each of the connections. A user may
be considered associated with a connection if the user ran a
test scenario, with a corresponding run that belongs to the
cluster of similar runs, in order to test a configuration change
belonging to the cluster of configuration changes.

Itisto be noted that by stating that weighting is done at least
in part according to a certain factor it is meant that the weight
may be a function of the factor and possibly other factors. For
example, the weighting module 467 may compute a weight
based both on the number of organizations associated with
connections and the number of users associated with the
connections.

Inyetanother embodiment, the weighting module 467 may
weight connections, at least in part, according to the number
of configuration elements belonging to the cluster of configu-
ration changes that have a corresponding run in the cluster of
similar runs (e.g., the corresponding run was run to test one or
more of the configuration changes in the cluster). For
example, the more configuration changes with corresponding
runs in the cluster of similar runs, the higher the weight given
to the connection between the cluster of similar runs and the
cluster of configuration changes.

In still another embodiment, the weighting module 467
may weight connections, at least in part, according to the
number of runs in the cluster of similar runs that were run to
test at least one configuration change belonging to the cluster
of configuration changes. For example, the more runs in the
cluster of similar runs that were run to test one or more
configuration changes (belonging to the cluster of similar
configuration changes), the higher the connection weight.

The connections selector 468 is configured to receive a
certain configuration change 469 of a certain software sys-
tem. Optionally, the certain software system is associated to a
certain organization that does not one of the different organi-
zations. Optionally, the certain configuration change 469 is
intended to be tested by a certain user. For example, the
certain user needs to run a test scenario that tests effects the
certain configuration change 469 may have on the certain
software system.

The connection selector 468 is also configured to select a
certain connection, weighted above a threshold, between a
cluster of similar configuration changes, to which the certain
configuration change 469 corresponds, and a certain cluster
of similar runs of test scenarios. Optionally, the certain con-
nection that is selected is a connection with maximal weight
among connections involving a cluster of similar configura-
tion changes to which the certain configuration change 469
corresponds.

In one example, the certain configuration change 469 may
be considered to correspond to a certain cluster of similar
configuration changes if the cluster contains the certain con-
figuration change 469. For example, the cluster may contain
a configuration element and corresponding value, and the

US 9,317,404 B1

115

certain configuration change 469 also involves the same ele-
ment and the same value. In another example, the certain
configuration change 469 may be considered to correspond to
a certain cluster of similar configuration changes if it is simi-
lar to one or more configuration changes belonging to the
certain cluster. Optionally, the similarity of the certain con-
figuration change 469 to one or more configuration changes
may be determined according to a similarity function which
relies on similarities of text and/or values. In yet another
example, the certain configuration change 469 may be con-
sidered to correspond to a cluster of similar configuration
changes, if the first clustering module 462 would have placed
the certain configuration change 369 in the cluster had the
certain configuration change 469 been among the configura-
tion changes clustered by the first clustering module 462.

In one embodiment, the threshold is a predetermined
threshold, e.g., the value of the threshold and/or logic used to
compute the threshold are known a priori. Optionally, the
value of the threshold depends on the size of the cluster of
similar configuration changes corresponding to the certain
connection. For example, the larger the cluster, the higher is
the threshold. Optionally, the value of the threshold depends
on the size of the certain cluster of similar runs. For example,
the larger the cluster of the similar runs (i.e., the more runs
belong to the cluster), the higher is the threshold.

In one embodiment, the threshold represents at least two
different users that acted according to the certain connection.
That is, for the purpose of computing the weight of connec-
tions, each user is counted only once. Thus, for the certain
connection to reach the threshold there needs to be at least a
first user that acted upon the certain connection, and at least a
second user that acted according to the certain connection.
Note that the first user is not the second user.

Herein, a user may said to “act according to a connection”
or “act upon a connection”, with reference to a connection
between a certain cluster of configuration changes and a
certain cluster of runs. This means that there is at least one run
of a test scenario, which was run by the user and which
belongs to the certain cluster of runs. Additionally, the run of
the test scenario was run by the user to test at least one
configuration change that belongs to the certain cluster of
configuration changes.

In another embodiment, the threshold represents at least
two different users, associated with at least two different
organizations, that acted according to the certain connection.
That is, for the purpose of computing the weight of connec-
tions, each user is counted only once, and each organization is
counted only once. Thus, for the certain connection to reach
the threshold there needs to be at least a first user, belonging
to a first organization, that acted upon the certain connection,
and at least a second user, belonging to the second organiza-
tion, that acted according to the certain connection. Note that
the first user is not the second user, and the first organization
is not the second organization.

One advantage of having the weight of the certain connec-
tion reach the threshold is that reaching the threshold may
indicate a desired level of usage. A high weight of a connec-
tion between a cluster of similar configuration changes and a
cluster of similar runs may be indicative, in some embodi-
ments, of a large number of users and/or large number of users
from different organizations, that utilize runs from the cluster
of similar runs to test the similar configuration changes. This
may be indicative of the general usefulness of the cluster of
similar runs for other organizations too.

The template selector 470 is configured to select, for the
certain user, a test scenario template representing the certain
cluster. Optionally, usage information received by the tem-

25

40

45

55

116

plate selector 470 indicates numbers of users and/or organi-
zations that utilized templates representing the certain cluster.
Thus, the template selector 470 may be able to select a tem-
plate known to be utilized by a large number of users and/or
organizations. Optionally, the template selector 470 may
receive a profile of the certain user and select an appropriate
template based on the profile. Optionally, the certain cluster
of similar runs includes a first run associated with a first
organization belonging to the different organizations and a
second run associated with a second organization belonging
to the different organizations. Additionally, the first organi-
zation is not the second organization.

In one embodiment, the template selector 470 may be also
configured to provide the certain user an indication of the
number of users belonging to the different organizations who
acted according to the certain connection. The more users
acted according to the certain connection, the higher the
likelihood that the certain connection is relevant to the certain
user. Additionally or alternatively, the template selector 470
may be also configured to provide the certain user an indica-
tion of the number of different organizations that are associ-
ated with the certain connection. The more organizations
associated with the certain connection, the higher the likeli-
hood that the certain connection is relevant to the certain user.

In another embodiment, the template selector 470 is
optionally configured to rank the test scenario template in
proportion to the weight of the certain connection. For
example, the higher the weight of the certain connection, the
higher the test scenario template is ranked. Ranking the tem-
plate may involve assigning the template a score and/or posi-
tioning the template in a certain ordering of templates.

In one embodiment, the computer system optionally
includes a template generator 471 that is configured to gen-
erate the test scenario template based on one or more runs of
test scenarios belonging to the certain cluster. Optionally, the
template selector 470 selects the test scenario template rep-
resenting the certain user from among templates generated by
the template generator 471. Optionally, the template selector
470 and the template generator 471 are implemented, in least
in part, by the same software component. Optionally, the
template generator 471 relies on information obtained from
the template selector 470 to determine which templates to
generate.

In one embodiment, the computer system includes an
optional monitoring module 451 that is configured to monitor
the users 450 belonging to the different organization, running
the test scenarios on the software systems that belong to the
different organizations, and to provide data obtained from the
monitoring to the test identifier 452. Optionally, at least some
of the test scenarios run by the users 450 are run to test how
the configuration changes 460 affect the software systems
belonging to the different organizations. Optionally, the
monitoring module may be used to monitor users belonging
to the certain organization.

In another embodiment, the computer system includes an
optional user interface 472 configured to suggest to the cer-
tain user to run an instantiation of the test scenario template.

In one embodiment, the certain software system is a SAP
ERP. Optionally, the configurations involve database tables.
Monitoring the users may involve monitoring of executed
transactions (e.g., queries to the database and/or values
returned from the database). The connections are connections
between clusters of database tables and clusters comprising
runs of test scenarios that include SQL statements which
access the database tables.

In another embodiment, the certain software system is an
Oracle ERP. Optionally, the configurations are customization

US 9,317,404 B1

117

code. Monitoring the users may involve monitoring executed
procedures. The connections are between clusters of customi-
zation code and clusters of runs of test scenarios that execute
the customization code.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 44 in
different ways. For example, in some embodiments one or
more of the following may be implemented by the same
software module and/or software modules running on the
same processor: the monitoring module 451, the test identifier
452, the first clustering module 462, the second clustering
module 465, the weighting module 467, the connection selec-
tor 468, the template selector 470, and the template generator
471. Optionally, one or more of the aforementioned compo-
nents may be implemented on a remote server, such as a
cloud-based server.

In one example, the weighting module 467 is implemented,
at least in part, by software modules belonging to the connec-
tion selector 468 and/or the connection generator 466. In
another example, the connection generator 466 is imple-
mented, at least in part, by software modules belonging to the
first clustering module 462 and/or the second clustering mod-
ules 465. In another example, the template selector 470 and
the template generator 471 are implemented, at least in part,
by the same software module.

FIG. 45 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template relevant
to a configuration change. The illustrated embodiment
includes the following steps:

In step 474, receiving data indicative of configuration
changes made to software systems of different organizations.

In step 475, clustering the configuration changes into clus-
ters of similar configuration changes.

In step 476, identifying runs of test scenarios run by users
belonging to the different organizations on software systems
belonging to the different organizations. Optionally, running
the test scenarios is useful for testing configuration elements
of the software systems. Optionally, identifying the runs also
involves identitying which configuration changes the runs are
intended to test.

In step 477, clustering the runs to clusters comprising
similar runs.

In one embodiment, the clustering of the runs involves
clustering the runs according to configuration changes and/or
configuration elements that are associated with the runs. That
is, at least some portion of notion of similarity between two
runs of test scenarios is determined according to configura-
tion changes and/or configuration elements associated with
each of the two runs. In one example, the configuration
changes associated with each of the two runs are described in
configuration files belonging to the systems on which the
respective test scenarios were run.

In step 478, generating connections between the clusters of
similar configuration changes and the clusters of similar runs.

In step 479, weighting the connections based on number of
different organizations associated with each of the connec-
tions. An organization is associated with a connection
between a cluster of similar configuration changes and a
cluster of similar runs if a run of a test scenario, from the
cluster of similar runs, is run by a user belonging to the
organization to test a configuration change from the cluster of
similar configurations changes. Additionally or alternatively,
weighting the connections may be based on other factors. For
example, such factors may be the number of users associated
with each connection, the size of the cluster of similar con-
figuration changes, and/or the size of the cluster of similar
runs.

25

40

45

55

118

In step 480, receiving a certain configuration change of a
certain software system to be tested by a certain user. Option-
ally, the certain software is associated with a certain organi-
zation that is not one of the different organizations.

In step 481, selecting a certain connection, weighted above
a threshold, between a cluster of similar configuration
changes, to which the certain configuration change corre-
sponds, and a certain cluster of similar runs of test scenarios.

Andinstep 482, selecting for the certain user a test scenario
template representing the certain cluster of similar runs.
Optionally, the certain cluster of similar runs includes a first
run associated with a first organization belonging to the dif-
ferent organizations and a second run associated with a sec-
ond organization belonging to the different organizations.
Additionally, the first organization is not the second organi-
zation.

In one embodiment, the computer implemented method
illustrated in FIG. 45 may include an optional step of moni-
toring the users 450 running the test scenarios on the software
systems that belong to the different organizations and provid-
ing data obtained from the monitoring to be used for the
identifying of the runs.

In one embodiment, the computer implemented method
illustrated in FIG. 45 may include an optional step of suggest-
ing to the certain user to run an instantiation of the test
scenario template. Optionally, suggesting may done via the
user interface 472.

In another embodiment, the computer implemented
method illustrated in FIG. 45 may include an optional step of
generating the test scenario template based on one or more
runs of test scenarios belonging to the certain cluster. Option-
ally, the template is generated from one or more runs of test
scenarios that are selected from the certain cluster. Option-
ally, selecting the one or more runs is based on received
information relating to an impact of configuration changes
belonging to the cluster of similar configuration changes on
runs of test scenarios belonging to the certain cluster. Option-
ally, the one or more runs based upon which the template is
generated are runs that are highly impacted by configuration
changes belonging to the cluster of similar configuration
changes.

In one embodiment, the computer implemented method
illustrated in FIG. 45 may include an optional step of provid-
ing the certain user an indication of the number of different
users who acted according to certain connection. Optionally,
the indication is provided via the user interface 472. Option-
ally, the more different users acted according the certain
connection, the higher the likelihood that the certain connec-
tion is relevant to the certain user. Additionally or alterna-
tively, the certain user may be provided an indication of the
number of different organizations associated with the certain
connection. Optionally, the indication is provided via the user
interface 472. Optionally, the more organizations are associ-
ated with the certain connection, the higher the likelihood that
the certain connection is relevant to the certain user.

In one embodiment, the computer implemented method
illustrated in FIG. 45 includes an optional step of ranking the
test scenario template in proportion to the weight of the cer-
tain connection. Optionally, the higher the weight of the cer-
tain connection, the higher the test scenario template is
ranked. Optionally, ranking the template may involve assign-
ing the template a score and/or positioning the template in a
certain ordering of templates.

In one embodiment, the computer implemented method
illustrated in F1G. 45 includes an optional step of marking the
certain configuration change 460 as missing test scenario

US 9,317,404 B1

119

template ifthe certain configuration change 460 does not have
a certain connection weighted above a threshold.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to select a test scenario template relevant to a configuration
change. The computer includes a processor, and the non-
transitory computer-readable medium stores the following
program code:

Program code for receiving data indicative of configuration
changes made to software systems of different organizations.

Program code for clustering the configuration changes into
clusters of similar configuration changes.

Program code for identifying runs of test scenarios run by
users belonging to the different organizations on the software
systems belonging to the different organizations; running the
test scenarios is useful for testing at least some of the con-
figuration changes.

Program code for clustering the runs to clusters comprising
similar runs.

Program code for generating connections between the
clusters of similar configuration changes and the clusters of
similar runs.

Program code for weighting the connections based on
number of different organizations associated with each of the
connections. An organization is associated with a connection
between a cluster of similar configuration changes and a
cluster of similar runs if a run of a test scenario, from the
cluster of similar runs, is run by a user belonging to the
organization to test a configuration change from the cluster of
similar configurations changes.

Program code for receiving a certain configuration change
of a certain software system to be tested by a certain user.

Program code for selecting a certain connection, weighted
above a threshold, between a cluster of similar configuration
changes, to which the certain configuration change corre-
sponds, and a certain cluster of similar runs of test scenarios.
Optionally, the certain cluster of similar runs includes a first
run associated with a first organization belonging to the dif-
ferent organizations and a second run associated with a sec-
ond organization belonging to the different organizations. In
addition, the first organization is not the second organization.

And program code for selecting for the certain user a test
scenario template representing the certain cluster of similar
runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for providing the
certain user an indication of the number of users belonging to
different organizations who acted according to the certain
connection; the more users acted according to the certain
connection, the higher the likelihood that the certain connec-
tion is relevant to the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
users belonging to the different organization running the test
scenarios on the software systems that belong to the different
organizations and providing data obtained from the monitor-
ing to be used for the identifying of the runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for suggesting to the
certain user to run an instantiation of the test scenario tem-
plate representing the certain cluster of similar runs.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for generating the
test scenario template representing the certain cluster of simi-
lar runs based on one or more runs of test scenarios belonging
to the certain cluster of similar runs.

10

15

20

25

30

35

40

45

50

55

60

65

120

FIG. 46 illustrates one embodiment of a computer system
configured select a test scenario template relevant for testing
a configuration change. The illustrated embodiment includes
at least a test identifier 672, a first connection analyzer 673, a
clustering module 674, a second connection analyzer 675, a
cluster identifier 676, a template generator 678, and a tem-
plate selector 679.

The test identifier 672 is configured to identify runs of test
scenarios run by users that belonging to the different organi-
zations and implementing configuration changes on software
systems belonging to the different organizations. Optionally,
running the test scenarios is useful for testing at least some of
the configuration changes. In one example, many configura-
tion elements may undergo a change of value as a result of
configuration changes. To test the influence of the configura-
tion changes, users may run test scenarios in order that test
various aspects and/or behaviors of their software system in
various conditions.

The first connection analyzer 673 is configured to identify
first connections between the configuration changes and the
runs. Optionally, a connection between a configuration
change and a run of a test scenario indicates that running the
test scenario may have been useful for testing the configura-
tion change.

In one embodiment, the first connection analyzer 673
receives information indicating, for some of the configuration
changes, which runs of test scenarios are related to the con-
figuration changes. In one example, runs oftest scenarios may
include data fields indicating which configuration changes
they are intended to test. Optionally, the data fields are added
by a designer of the test scenario. In another example, the first
connection analyzer 673 receives a table that lists identifiers
of runs of test scenarios that were run to test each configura-
tion change.

In another embodiment, the first connection analyzer 673
analyzes runs of test scenarios, and from the analysis the
connection analyzer 673 is able to learn of one or more
configuration changes that may have affected a system. For
example, the runs may contain evidence indicating that the
one or more configuration changes affected the system. Con-
sequently, the one or more configuration changes may be
connected, by first connections, to the runs in which they were
found.

In one example, the first connection analyzer 673 utilizes
text analysis of a run of a test scenario, such as analyzing code
belonging to a test scenario being run, input provided for
running the test scenario, and/or output files, such as log files,
generated when running the test scenario. The text analysis
searches for certain names and/or values that are part of
configuration changes (e.g., file paths, business process
names, and/or values associated with configuration ele-
ments). If such names and/or values are found, the corre-
sponding configuration changes may be connected with the
run of the test scenario with first connections.

In another example, the first connection analyzer 673 uti-
lizes static analysis of code utilized for running a test scenario
in order to identify one or more configuration changes that
may be tested by running the test scenario. The static analysis
may reveal if certain business processes, programs, and/or
transactions are to be executed in various control flows of the
code. If the certain business processes, programs, and/or
transactions are linked to the one or more configuration
changes, then the one or more configuration changes may be
connected to runs of the test scenario with first connections.
For example, a configuration change may indicate that a
certain default transaction should be performed if updating a
database fails. If static analysis reveals that a test scenario

US 9,317,404 B1

121

may perform the certain default transaction under certain
conditions, a first connection may be made between the con-
figuration change and a run of the test scenario.

In yet another example, the first connection analyzer 673
utilizes dynamic analysis performed while running a test
scenario in order to identify one or more configuration
changes that may be tested by running the test scenario.
Optionally, the run of the test scenario includes data collected
while the dynamic analysis was performed. Analyzing the
dynamic analysis data may reveal which transactions, busi-
ness processes, and/or system resources were involved in the
run of the test scenario. If the transactions, business pro-
cesses, and/or system resources correspond to specific con-
figuration changes (e.g., identifiers of the transaction appear
as values related to the specific configuration changes), then
the specific configuration changes may be connected to the
run of the test scenario via first connections.

In one embodiment, the first connection analyzer 673
receives indications regarding one or more configuration
changes of interest at a given point of time. Operating under
the assumption that runs of test scenarios that were run
directly after the point of time (but within a predefined time
frame such as a few hours) are done in order to test the one or
more configuration changes, the first connection analyzer 673
may connect between the one or more configuration changes
and the runs of the test scenarios with first connections.

The clustering module 674 is configured to cluster the runs
of test scenarios identified by the test identifier 672 into
clusters comprising similar runs of test scenarios. Optionally,
the clustering is based on similarity between the runs of the
test scenarios. Optionally, the clustering is based on similarity
between configuration eclements and/or configuration
changes associated with the runs of the test scenarios. For
example, the clustering may utilize similarities between con-
figuration files of systems on which the test scenarios were
run, in order to help determine a placement of runs into
clusters.

The second connection analyzer 675 is configured to gen-
erate, based on the first connections, second connections
between the configuration changes and the clusters of similar
runs. For example, if a first connection exists between a
certain configuration change and a certain run, and in addi-
tion, the certain run belongs to a certain cluster, then the
second connection analyzer 675 may generate a second con-
nection between the certain configuration change and the
certain cluster.

In one embodiment, a second connection is made between
a configuration change and a cluster, if there exists at least one
first connection between the configuration change and a cer-
tain run, and certain run belongs to the cluster. Optionally, in
order to generate a second connection between a configura-
tion change and a cluster, the configuration change needs to
be linked to the cluster via a number of different runs that
reaches a threshold. Optionally, the threshold depends on the
size of the cluster, e.g., the larger the size of the cluster, the
higher the threshold.

The cluster identifier 676 is configured to receive a certain
configuration change 677 of a certain user, and to identify a
certain cluster of similar runs which correspond to the certain
configuration change 677. The cluster identifier 676 identifies
the certain cluster by comparing the certain configuration
change 677 with configuration changes that take part in the
second connections. Optionally, at least one of the second
connections involves the certain cluster. Optionally, the cer-
tain configuration change 677 is related to a software system
on which the certain user may run test scenarios. Optionally,
the certain user is tasked with running a test scenario that is

10

15

20

25

30

35

40

45

50

55

60

65

122

intended to test the certain configuration change 677. Option-
ally, the certain cluster of similar runs includes a first run
associated with a first organization belonging to the different
organizations and a second run associated with a second
organization belonging to the different organizations. Addi-
tionally, the first organization is not the second organization.

In one embodiment, the certain cluster of similar runs
corresponds to the certain configuration change 677 if there
exists a second connection between the certain configuration
change 677 and the certain cluster. Additionally or alterna-
tively, the certain cluster may correspond to the certain con-
figuration change 677 if there exists at least one first connec-
tion between the certain configuration change 677 and a run
belonging to the certain cluster. Optionally, the certain cluster
may correspond to the certain configuration change 677 if
there exists at least a predetermined number of first connec-
tions between the certain configuration change 677 and one or
more runs belonging to the certain cluster.

In another embodiment, the certain cluster of similar runs
corresponds to the certain configuration change 677 if there
exists a second connection between a configuration change
similar to the certain configuration change 677 and the certain
cluster. In one example, a configuration change may be con-
sidered similar to the certain configuration change 677 if both
configuration changes involve the same configuration ele-
ment, possibly with different values associated with the
respective changes. In another example, a configuration
change may be considered similar to the certain configuration
change 677 if they are determined to be similar according to
a similarity function which relies on similarities of text and/or
values. In yet another example, a configuration change may
be considered similar to the certain configuration change 677,
if both would have been placed in a same cluster by a clus-
tering algorithm that clusters configuration changes. Addi-
tionally or alternatively, the certain cluster may correspond to
the certain configuration change 677 if there exists at least one
first connection between a configuration change similar to the
certain configuration change and a run belonging to the cer-
tain cluster. Optionally, the certain cluster may correspond to
the certain configuration change 677 if there exists at least a
predetermined number of first connections between one or
more configuration changes similar to the certain configura-
tion change 677 and one or more runs belonging to the certain
cluster.

The template generator 678 is configured to generate test
scenario templates based on runs belonging to the certain
cluster. Optionally, the template generates one or more tem-
plates, where each template is generated from one or more
runs belonging to the certain cluster.

The template selector 679 is configured to select, based on
the number of different organizations associated with the
templates, a representative test scenario template to represent
the certain cluster. Optionally, an organization may be con-
sidered associated with a template if a run of a test scenario
that was used to generate the template was run by a user
belonging to the organization. Optionally, an organization
may be associated with a template if a user belonging to the
organization runs an instantiation of the template.

In one embodiment, the template selector 679 receives
usage information that may indicate numbers of users and/or
organizations that utilized templates representing the certain
cluster. Based on the received usage information, the template
selector 679 may be able to select a template known to be
utilized by a large number of users and/or organizations.
Optionally, the template selector 679 may receive a profile of
the certain user and select an appropriate template based on

US 9,317,404 B1

123

the profile. For example, the template may include transac-
tions indicated in the profile to be utilized by the certain user.

In one embodiment, the representative test scenario tem-
plate is generated based on a first run associated with a first
organization belonging to the different organizations and a
second run associated with a second organization belonging
to the different organizations. Additionally, the first organi-
zation is not the second organization. Optionally, the certain
user does not belong to the first organization and does not
belong to the second organization.

In one embodiment, selecting the representative test sce-
nario template for the certain user is guided, at least in part, by
impact of the certain configuration change 677 on runs of test
scenarios belonging to the certain cluster. Optionally, impact
of'the certain configuration change 677 is determined, at least
in part, according to its influence on an outcome of running
test scenarios. For example, if the certain configuration
change 677 alters the control flow of the execution of a run
(e.g., causes different transactions to be executed), its impact
may be considered to be high. In another example, a certain
configuration change 677 may cause a system error, which
may dramatically change the outcome of a run; in this case
too, the impact of the certain configuration change 677 may
be considered to be high. In another example, the certain
configuration change 677 does not alter the control flow of the
execution of a test scenario; in this case, the impact of the
certain configuration change on 677 may be considered low.
Optionally, the impact of the certain configuration change
677 may be determined by static analysis of test scenarios
and/or runs of test scenarios that belong to the certain cluster.
For example, static analysis may help determine if there are
transactions in the test scenarios that depend on a configura-
tion element involved in the certain configuration change 677
and/or the extent of the dependence. Optionally, the impact
may be determined by dynamic analysis of runs of the test
scenarios belonging to the certain cluster. For example, the
control flow and/or data flow of the runs may be examined to
generate a list of system components, transactions, and/or
programs that are involved in each run; by comparing the list
with the certain configuration change 677, it may be deter-
mined which runs are impacted by the certain configuration
change 677.

In one embodiment, the template selector 679 may be also
configured to provide the certain user an indication of the
number of users belonging to the different who ran instantia-
tions of the representative test scenario template; the more
users belonging to different organizations that run instantia-
tions of the representative test scenario template, the higher
the likelihood that the representative test scenario template is
relevant for the certain user. Additionally or alternatively, the
template selector 679 may be also configured to provide the
certain user an indication of the number of different organi-
zations associated with the representative test scenario tem-
plate; the more organizations associated with the representa-
tive test scenario template, the higher the likelihood that the
representative test scenario template is relevant for the certain
user. Optionally, indications regarding the number of users
that ran instantiations of the representative test scenario tem-
plate and/or indications of the number of organizations asso-
ciated with the representative test scenario template are given
via the user interface 680.

In another embodiment, the template selector 679 is
optionally configured to rank the representative test scenario
template in proportion to the number of organizations asso-
ciated with it. For example, the higher the number of organi-
zations associated with the representative test scenario tem-
plate, the higher the representative test scenario template is

10

15

20

25

30

35

40

45

50

55

60

65

124

ranked. Ranking the representative test scenario template
may involve assigning the representative template a score
and/or positioning the representative template in a certain
ordering of templates.

In one embodiment, the computer system includes an
optional monitoring module 671 that is configured to monitor
the users 670 belonging to the different organization, running
the test scenarios on the software systems that belong to the
different organizations, and to provide data obtained from the
monitoring to the test identifier 672.

In another embodiment, the computer system includes an
optional user interface 680 configured to suggest to the cer-
tain user to run an instantiation of the representative test
scenario template.

Inone embodiment, the certain configuration change 677 is
associated with a certain software system (e.g., the certain
configuration change 677 affects the certain software sys-
tem). Optionally, the certain software system is associated
with an organization that is not one of the different organiza-
tions. In one example, the certain software system is a SAP
ERP, configurations involve database tables, and configura-
tion changes may involve changes to entries in database
tables. Monitoring the users involves monitoring executed
transactions (e.g., queries and returned values). The second
connections are connections between database tables and
clusters of runs of test scenarios that include SQL statements
which access the database tables. In another example, the
certain software system is an Oracle ERP, configurations are
customization code, and configuration changes may involve
changes to customization code. Monitoring the users involves
monitoring executed procedures. The connections are
between clusters of customization code and clusters of runs of
test scenarios that execute the customization code.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 46 in
different ways. For example, in some embodiments one or
more of the following may be implemented by the same
software module and/or software modules running on the
same processor: the monitoring module 671, the test identifier
672, the clustering module 674, the first connection analyzer
673, the second connection analyzer 675, the cluster identifier
676, the template generator 678, and the template selector
679. Optionally, one or more of the aforementioned compo-
nents may be implemented, at least in part, on a remote server,
such as a cloud-based server.

In one example, the first connection analyzer 673 and the
test identifier 672 utilize some of the same software modules
and/or are realized by the same software components. In
another example, the second connection analyzer 675 is
implemented at least in part by the cluster identifier 676
and/or the clustering module 674. In another example, the
template selector 670 and the template generator 678 are
implemented, at least in part, by the same software module.

FIG. 47 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template useful
for testing a configuration change. The illustrated embodi-
ment includes the following steps:

In step 491, identifying runs of test scenarios run by users
belonging to different organizations. The users are imple-
menting configuration changes on software systems belong-
ing to the different organizations. Running the test scenarios
may be useful for testing at least some of the configuration
changes being implemented. For example, running a test sce-
nario on a software system may assist in determining the
impact of a configuration change on the software system.
Optionally, the impact may indicate whether the configura-
tion change alters a control flow of the test scenario and/or

US 9,317,404 B1

125

whether an outcome of running the test scenario changes due
to implementing the configuration change.

In step 492, identifying first connections between configu-
ration changes and the runs. Optionally, there may be a con-
figuration change that has more than one first connection
between the configuration change and one or more runs.
Optionally, there may be a configuration change with no first
connection between the configuration change and a run.

In step 493, clustering the runs into clusters of similar runs.
Optionally, the clustering is done at least in part, according to
configuration elements associated with the runs and/or con-
figuration changes associated with the runs. Optionally, the
clustering is done, at least in part, based on data included in
the runs. Herein, by stating that the clustering is done “at least
in part” according to a certain factor, it may mean that simi-
larity of runs is determined in part according to the certain
factor. For example, a similarity function used to compute
similarity between runs may make its computations accord-
ing to several factors, of which the certain factor is one.

In step 494, identifying, from the first connections and the
clustering (e.g., assignments of runs to clusters), second con-
nections between configuration changes and the clusters.
Optionally, a second connection is identified between a con-
figuration change and a cluster if there is at least one first
connection between the configuration change and a run
belonging to the cluster. Optionally, a second connection is
identified between a configuration change and a cluster if
there at least a predetermined number of first connections
between the configuration change and runs belonging to the
cluster. Optionally, a second connection is identified between
a configuration change and a cluster if first connections
between the configuration change and run belong to the clus-
ter are associated with at least a predetermined number of
organizations. A first connection between a configuration
change and a run may be considered associated with an orga-
nization if a user belonging to the organization ran the run.
Optionally, identifying the second connections involves stor-
ing the second connections for future used. For example,
storing the second connections may involve storing linking
information that may link between the at least some of the
configuration changes and at least some of the clusters.

In step 495, receiving a certain configuration change of a
certain user. Optionally, the certain user belongs to a certain
organization that is not one of the different organizations.
Optionally, the certain configuration change is to be per-
formed on a software system belonging to the certain organi-
zation. Additionally, the certain organization is not one of the
different organizations.

In step 496, identifying a certain cluster of similar runs
which correspond to the certain configuration change by
comparing the certain configuration change with configura-
tion changes that take part in the second connections. A
configuration change is considered to take part in a second
connection if the second connection is between the configu-
ration change and a cluster of similar runs. Optionally, the
certain cluster corresponds to the certain configuration
change if there is a second connection between the certain
configuration change and the certain cluster. Optionally, the
certain cluster corresponds to the certain configuration
change if there is a second connection between a configura-
tion change, which is similar to the certain configuration
change, and the certain cluster. Optionally, the certain cluster
of similar runs includes a first run associated with a first
organization belonging to the different organizations and a
second run associated with a second organization belonging
to the different organizations. In addition, the first organiza-
tion is not the second organization.

20

40

45

55

126

In step 497, generating test scenario templates based on
runs of test scenarios belonging to the certain cluster. Option-
ally, the templates identify transactions executed while run-
ning the test scenarios and/or possible values that may be used
to execute the transactions.

And in step 498, selecting, based on number of different
organizations associated with the templates, a representative
test scenario template to represent the certain cluster.

In one embodiment, the representative test scenario is a
template is selected such that, from among the templates that
may represent the certain cluster, it is associated with a high-
est number of organizations. That is, there is no other tem-
plate among the templates that is associated with more orga-
nizations than the number of organizations the representative
template is associated with.

In another embodiment, selecting the representative test
scenario template is done, at least in part, according to the
number of users that ran test scenarios belonging to the cer-
tain cluster. For example, the representative template is a
template with a highest number of different users that ran
instantiations of the template. That is, there is no other tem-
plate with a number of users that ran its instantiations that is
larger than the number of users that ran instantiations of the
representative template. In another example, the representa-
tive template is a template which was generated from runs of
test scenarios run by a largest number of users. That is, there
is no other template generated by runs, belonging to the
certain cluster, which were run by more users that the number
of users that ran the runs from which the representative tem-
plate was generated.

In one embodiment, the computer implemented method
illustrated in FIG. 47 may include optional step 490 which
involves monitoring the users running the test scenarios on
the software systems that belong to the different organiza-
tions and providing data obtained from the monitoring to be
used for the identifying of the runs.

In one embodiment, the computer implemented method
illustrated in FIG. 47 may include an optional step of suggest-
ing to the certain user to run an instantiation of the represen-
tative test scenario template. For example, suggesting may
done via the user interface 680.

In one embodiment, the computer implemented method
illustrated in FIG. 47 may include an optional step of provid-
ing the certain user an indication of number of users belong-
ing to different organizations who ran instantiations of the
representative test scenario template; the more users belong-
ing to different organizations that run instantiations of the
representative test scenario template, the higher the likeli-
hood that the representative test scenario template is relevant
for the certain user. Alternatively or additionally, the com-
puter implemented method illustrated in FIG. 47 may include
an optional step of providing the certain user an indication of
number of different organizations associated with the repre-
sentative test scenario template; the more organizations asso-
ciated with the representative test scenario template, the
higher the likelihood that the representative test scenario tem-
plate is relevant for the certain user.

In one embodiment, the certain cluster is a cluster with a
number of second connections with the certain configuration
change that is maximal; i.e., there is no other cluster for which
the number of second connections between the certain con-
figuration change and the other cluster is larger. Alternatively
or additionally, the certain cluster may be a cluster with a
number of second connections with a configuration change
similar to the certain configuration change that is maximal;
i.e., there is no other cluster for which the number of second

US 9,317,404 B1

127

connections between a configuration change similar to the
certain configuration change and the other cluster is larger.

In another embodiment, the certain cluster is a cluster, from
among clusters that have at least one second connection
between the certain configuration change and them, which is
associated with the most organizations. That is, there is no
other cluster for which there is a second connection between
the certain configuration change and the other cluster, and
other cluster contain runs associated with more organizations
than the number of organizations associated with runs
included in the certain cluster. Alternatively or additionally,
the certain cluster may be a cluster, selected from among
clusters that have at least one second connection between the
configuration change similar to the certain configuration
change and them, which is associated with the most organi-
zations. That is, there is no other cluster for which there is a
second connection between a configuration change similar to
the certain configuration change and the other cluster, and
other cluster contain runs associated with more organizations
than the number of organizations associated with runs
included in the certain cluster.

In one embodiment, the computer implemented method
illustrated in FIG. 47 may include an optional step of receiv-
ing information related to impact of the certain configuration
change on runs of test scenarios belonging to the certain
cluster and selecting, based on the information related to the
impact, the representative test scenario template. For
example, the representative test scenario template that is
selected is a template impacted the highest by the certain
configuration change, from among the templates that repre-
sent the certain cluster.

In another embodiment, the computer implemented
method illustrated in FIG. 47 may include an optional step of
ranking the representative test scenario template in propor-
tion to the number of different organizations associated with
the representative test scenario template.

In yet another embodiment, the computer implemented
method illustrated in FIG. 47 may include an optional step of
marking a configuration change that does not have a second
connection as missing a test scenario template.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to select a test scenario template useful for testing a configu-
ration change. The computer includes a processor, and the
non-transitory computer-readable medium stores the follow-
ing program code:

Program code for identifying runs of test scenarios run by
users belonging to the different organizations implementing
configuration changes on software systems belonging to the
different organizations. Optionally, running the test scenarios
is useful for testing at least some of the configuration changes.

Program code for identifying first connections between
configuration changes and the runs.

Program code for clustering the runs into clusters of similar
runs.

Program code for identifying, from the first connections
and the clustering, second connections between configuration
changes and the clusters.

Program code for receiving a certain configuration change
of a certain user.

Program code for identifying a certain cluster of similar
runs which correspond to the certain configuration change by
comparing the certain configuration change with configura-
tion changes that take part in the second connections. Option-
ally, the certain cluster of similar runs includes a first run
associated with a first organization belonging to the different
organizations and a second run associated with a second

20

40

45

55

60

128

organization belonging to the different organizations. In addi-
tion, the first organization is not the second organization.

Program code for generating test scenario templates based
on runs belonging to the certain cluster.

And program code for selecting, based on number of dif-
ferent organizations associated with the templates, a repre-
sentative test scenario template to represent the certain clus-
ter. Optionally, the representative test scenario template is a
test scenario template that is associated with the highest num-
ber of different organizations.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting the
representative test scenario template according to the number
of'users that run test scenarios belonging to the certain cluster.

In another embodiment, the non-transitory computer-read-
able medium optionally stores program code for monitoring
the users belonging to the different organization running the
test scenarios on the software systems that belong to the
different organizations and providing data obtained from the
monitoring to be used for the identifying of the runs.

In still another embodiment, the non-transitory computer-
readable medium optionally stores program code for suggest-
ing to the certain user to run an instantiation of the represen-
tative test scenario template representing the certain cluster of
similar runs.

In yet another embodiment, the non-transitory computer-
readable medium optionally stores program code for provid-
ing the certain user an indication of number of users belong-
ing to different organizations who ran instantiations of the
representative test scenario template; the more users belong-
ing to different organizations that run instantiations of the
representative test scenario template, the higher the likeli-
hood that the representative test scenario template is relevant
for the certain user. Additionally or alternatively, the non-
transitory computer-readable medium may optionally store
program code for providing the certain user an indication of
number of different organizations associated with the repre-
sentative test scenario template; the more organizations asso-
ciated with the representative test scenario template, the
higher the likelihood that the representative test scenario tem-
plate is relevant for the certain user.

Code Elements

Software systems on which user may run test scenarios
often involve large amounts of computer code (e.g., one SAP
ERP code base includes about 60,000 compilation units
which are linked together into approximately 9,000 pro-
grams). It is therefore often required to be able to relate to
certain portions of the code (e.g., aportion of code may be one
or more lines of code). Herein, a portion of code that may be
utilized by a software system is referred to as a code element.

In some embodiments, code elements may be identified by
at least one of the following: procedures without specific
invocations, classes without specific invocations, database
triggers, stored procedures, screens, and/or tables in a data-
base.

In one example, a database trigger is procedural code that
is automatically executed in response to certain events on a
particular table or view in a database. For example, when a
new record (representing a new worker) is added to the
employees table, new records should also be created in the
tables of the taxes, vacations and salaries. In this example, the
new records are created via a database trigger associated with
the employee table that caused the automatic creation of the
new records in the tables of the taxes, vacations and salaries.

In one example, code elements may include stored proce-
dures. Optionally stored procedures may include code
executed by the procedures and/or data related to invocations

US 9,317,404 B1

129

of' the stored procedures, such as locations in the code where
the stored procedures are to be invoked and/or values
involved in the invocation.

In another example, code elements may include screens,
such as data that describes screens presented to a user. The
description of screens may include fields presented on the
screens, values corresponding to fields, logic executed by
interacting with screens (e.g., logic that is executed when a
button is pressed), order of presentation of screens, and/or
logic that controls presentation of screens to the user.

In yet another example, code elements may include tables
in a database, such as data that describes the tables. The
description may include column names and/or column types,
values in the tables, and/or actions that may be applied to the
tables (e.g., statements that operate on the tables).

In one embodiment, the code elements may be delimited by
scope. For example, a code element encompasses a certain
function, procedure, screen, database table, or program.
Alternatively, the code elements may be delimited by size.
Thus, for example, code corresponding to a certain transac-
tion may be partitioned into several code elements corre-
sponding to the various functions, procedures, or programs.

In another embodiment, each of the code elements may
include code with similar functionality. For example, a cer-
tain transaction may have code that includes code with dif-
ferent functionalities, such as handling user input and output
(e.g., code corresponding to a screen), code for querying a
database, and code for processing information retrieved from
the database. The code of the certain transaction may be
partitioned into several code elements based on the function-
ality of the elements; therefore, the code that handles the user
input and output may be divided to one or more code ele-
ments. Similarly, the code for querying the database may be
placed in one or more additional code elements, and the code
for processing the retrieved information may be placed in
other code elements.

FIG. 48 and FIG. 49 illustrate embodiments of a computer
system configured to identify dependencies between configu-
ration elements and transactions. The illustrated embodi-
ments include at least an activity analyzer 504, a static analy-
sis module 507, and a dependency module 508.

The activity analyzer 504 is configured receive activity
data 503 obtained by monitoring activity of users belonging
to different organizations. Optionally, the activity of the users
involves operating software systems associated with the dif-
ferent organizations. In one example, at least some of the
activity data 503 may be related to running of test scenarios
on the software systems by the users, e.g., the activity data
may include run of test scenarios.

In one embodiment, the software systems enable identifi-
cation of at least some of the transactions executed on the
software systems. For example, a log-keeping procedure of a
software system may record identifying information regard-
ing transactions performed by a user on the software system.
Additionally, at least some of the configuration elements
related to the system are identifiable. For example, at least
some of'the configuration elements are accessible to auser via
a menu and/or configuration file in which the presence of
certain configuration elements, and/or associated values of
the configuration elements, may be determined. Additionally,
as explained below, at least some of the configuration ele-
ments may be connected to at least some of the transactions
via code elements. For example, a certain code element may
be linked both to a certain transaction and to a certain con-
figuration element, thus connecting between the certain trans-
action and the certain configuration element.

10

20

30

40

45

50

55

130

The activity analyzer 504 is also configured to generate,
based on the activity data 503, a first set of links between the
transactions and code elements associated with the transac-
tions; each link in the first set, between a certain transaction
and one or more code elements, is based on activity data
obtained from at least two different organizations. For
example, at least two users from two different organizations
were monitored while executing the one or more code ele-
ments associated with the certain transaction.

In one embodiment, the activity data 503 includes a list of
business processes and/or transactions executed by the users.
In one example, the business process and/or transactions may
beidentified according to their names, identifier codes, and/or
descriptions (e.g., a list of fields in a screen involved in a
transaction). In another example, the activity data may indi-
cate that a certain group of transactions was executed; e.g., by
mentioning that a certain protocol was tested (e.g., adding and
removing an employee), it may be inferred that all the trans-
actions involved in the protocol were executed. Optionally,
the activity data 503 may include indications of code
executed by the users. For example, the indications may be in
the form of names of programs, portions of code, hash values
of'code, and/or outputs that are typically generated by certain
code (and thus may indicate that the certain code was
executed). Optionally, the activity data 503 includes data that
enables synchronization. For example, the activity data may
include time stamps and/or program counters (indicating a
position in code).

Based on the activity data 503, the activity analyzer 504
can pair between transaction executed by a user at a certain
time and corresponding code executed at the time. In one
example, the activity data 503 indicates a certain transaction
by name that was executed by a user. The activity analyzer
504 receives (as part of the activity data 503 and/or from
another source) code corresponding to the certain transaction,
and is thus able to form a link between the certain transaction
and the code of the certain transaction. Optionally, a single
link is formed between the certain transaction and the code of
the certain transaction. Alternatively, multiple links may be
formed, such as multiple links formed between the certain
transaction and various portions of the code of the certain
transaction.

In one embodiment, the code elements include data of at
least one of the following types: procedures without specific
invocations, classes without specific invocations, database
triggers, stored procedures, screens, and tables in a database.

The static analysis module 507 is configured to receive the
configuration elements 536 and code of a software system
506 which includes code that corresponds to at least one of the
following: procedure invocations, user interface statements,
and database access statements. Optionally, the code 506
includes statements written in a programming language that
define a set of syntactical elements that are analyzed by static
analysis tools.

In one embodiment, procedure invocation may include any
call to a function, procedure and/or program by a calling
program. Optionally, the procedure invocation may include
an invocation statement that includes information such as the
name of the procedure and/or arguments provided for an
invocation of the procedure (e.g., values placed on a stack in
memory, to be utilized by the procedure). Additionally or
alternatively, the procedure invocation may include code cor-
responding to the procedure, such as code to be executed by
the invoked procedure.

In one embodiment, user interface statements may include
any commands and/or programs that result in retrieval, gen-
eration, and/or presentation of data to a user via a user inter-

US 9,317,404 B1

131

face. Additionally or alternatively, user interface statements
may include any commands and/or programs that result in
receiving, recording and/or processing of data provided by a
user to a system via a user interface. Additionally or alterna-
tively, user interface statements may include data provided by
a user to a system via the user interface and/or any data
provided by a system to a user via the user interface. Option-
ally, the user interface may include one or more apparatuses
that may receive information from a user, such as a keyboard,
touch screen, mouse, microphone, motion tracking appara-
tus, and/or eye tracking apparatus. Additionally or alterna-
tively, the user interface may include one or more apparatuses
that may provide information to a user, such as a screen, an
augmented and/or virtual reality display, a speaker, a printer,
and/or a haptic feedback device.

In one embodiment, database access statements may
include commands and/or programs that result in reading data
from a database, writing data to a database, and/or modifying
data in a database. Additionally or alternatively, database
access statements may include commands and/or programs
that change attributes of a database, such as altering columns
in a database and/or changing access permissions to certain
data in a database. In one example, database access state-
ments may include SQL statements that operate on one or
more tables in a database. In another example, database
access statements may include CGI scripts that cause a sys-
tem to retrieve data from a database.

The static analysis module 507 is also configured to gen-
erate, based on static analysis of the code 506, a second set of
links between 538 the configuration elements 536 and code
elements from the code of the software system 506, which are
influenced by the configuration elements 536. Optionally, the
static analysis module 507 may receive code of multiple
software systems and perform static analysis on the code of
the multiple software systems in addition to, or as part of,
static analysis of the code 506.

There are several approaches that may be utilized by one
skilled in the art for performing static analysis in order to
identify the links between the configuration elements and
code elements influenced by the configuration elements. In
one embodiment, data flow analysis is used to detect certain
code elements that may be affected by certain configuration
elements and/or involve certain configuration elements. For
example, if according to the data flow analysis it is deter-
mined that a value of a configuration element may be utilized
at some point, or under certain conditions, by a code element,
the static analysis module 507 may determine that the con-
figuration element influences the code element. Accordingly,
a link may be formed by the static analysis module 507
between the code element and the configuration element. In
another embodiment, control flow analysis may be utilized to
detect certain code elements that may be affected by certain
configuration elements. For example, flow analysis of code
may reveal that access to a configuration element, and/or a
value of the configuration element, may affect the program in
certain ways, such as causing certain statements to be
executed. Thus, the static analysis module 507 may deter-
mine, based on the flow analysis, that the configuration ele-
ment influences the code corresponding to the certain state-
ments. Based on that determination, the static analysis
module 507 may generate links between code elements cor-
responding to the certain statements and the configuration
element.

In some embodiments, the number of configuration ele-
ments received by the static analysis module 507 may be very
large and/or the code of the software system 506 may be quite
extensive. Performing static analysis of the entire body of

15

35

40

45

132

code 506 with respect to all the configuration elements may
be prohibitive. Therefore, in some cases, the static analysis
module 507 may perform analysis primarily of a subset of the
code 506 and/or consider a subset of the configuration ele-
ments. For example, analysis effort may primarily focus on
the subset of code and/or the subset of the configuration
elements.

In one example, the configuration elements include one or
more elements with associated values that have changed.
Optionally, determining which elements have associated val-
ues that have changed may be done by comparing a current
version of configuration elements (e.g., a configuration file)
with a previous version of the configuration elements.
Optionally, the static analysis module 507 may direct a rela-
tively larger portion of the analysis effort towards elements
whose associated value has changed, compared to analysis
effort devoted to other configuration elements. Optionally,
based on determining which elements have associated values
that have changed, the static analysis module 507 can deter-
mine which subsets of the code 506 are likely to be affected by
the elements with associated values that have changed, and
perform its analysis primarily on those subsets of code.

Inanother example, the static analysis module 507 receives
a certain field of operation of a certain organization (e.g., the
field of operation may be banking or automotive industry).
Based on the field of operation, the static analysis module 507
may determine a subset of the configuration elements that are
typically used by organizations that are in the same field of
operation. Alternatively or additionally, the static analysis
module 507 may determine subsets of the code 506 that are
typically utilized by organization in the field of operation. The
static analysis module 507 may then focus analysis efforts
more on the subset of elements and/or subsets of code.

The dependency module 508 is configured to utilize the
first set of links 534 and the second set of links 538 to identify
dependencies 509 between the transactions and the configu-
ration elements. Optionally, the dependency module 508 is
configured to identify a dependency between a certain trans-
action and a certain configuration element by identifying a
certain code element that is common both to a link from the
second set, between the certain configuration element and the
certain code element, and a link from the first set, between the
certain code element and the certain transaction.

FIG. 51 provides a schematic illustration of one way for
forming the dependencies between the transactions 532 and
the configuration elements 536. In one embodiment, a depen-
dency between a certain transaction and a certain configura-
tion element relies on chaining links involving the second set
of links 538 and the first set of links 534. There needs to be at
least one link from the second set 538 between a certain
configuration element, from among the configuration ele-
ments 536, and a certain code element, from among the code
elements 530. Additionally, there needs to be at least one link
from the first set of links 534 between the certain code ele-
ment and a certain transaction from the transactions 532. If
both links exist, then a dependency between the certain trans-
action and the certain configuration element may be formed.

In one embodiment, the software systems belonging to the
different organizations are SAP ERP system. Optionally, con-
figurations involve database tables, and configuration ele-
ments may involve entries and/or attributes in database tables.
Monitoring the users involves monitoring of the transactions
and indicating which code elements are executed. The second
set of links may include links between code elements and
SQL statements which access the database tables.

In another embodiment, the software systems belonging to
the different organizations are Oracle ERP systems. Option-

US 9,317,404 B1

133

ally, configurations involve customization code. Monitoring
the users involves monitoring executed procedures. The sec-
ond set of links may include links between the executed
procedures and the calls to the customization code.

In still another embodiment, the software systems belong-
ing to the different organizations run Java Virtual Machines
(JVM). The JVMs enable associations at run-time between
Java code and transactions executed on the systems.

In one embodiment, the computer system optionally
includes a monitoring module 502 configured to monitor the
activity of the users 500 belonging to the different organiza-
tions and to provide the activity data 503 to the activity
analyzer 504.

In one embodiment, the computer system optionally
includes a template selector 510. The template selector 510 is
configured to receive a certain configuration element 511 and
to select a test scenario template suitable for testing a trans-
action that is dependent on the certain configuration element
511. Optionally, the certain configuration element 511 relates
to a software system belonging to a different organization
than one or more organization to which belongs the software
system related to the code 506.

The selection by the template selector 510 may be based on
the dependencies 509 generated by the dependency module
508. For example, the template that is selected is one that
includes a transaction, which according to a dependency
described in the dependencies 509 is dependent on the certain
configuration element 511. Optionally, the template selector
510 is configured to select the test scenario template based on
weight of dependencies. For example, the template that is
selected is one that includes a transaction, which according to
adependency described in the dependencies 509 is dependent
onthe certain configuration element 511, and additionally has
the highest weight among dependencies between the certain
configuration element 511 and transactions. Additionally, the
computer system may include an optional user interface 512
that is configured to suggest to a user to run an instantiation of
the test scenario template.

In one embodiment, the template selector 510 selects the
test scenario template suitable for testing a transaction that is
dependent on the certain configuration element 511 from
among templates generated from the activity data 503.
Optionally, the templates are generated from runs of test
scenarios identified from the activity data 503. Optionally, the
runs are clustered into clusters of similar runs, and each
template is generated from one or more runs belonging to a
same cluster. Optionally, the selection of the template at least
in part on the number of different users and/or different orga-
nizations associated with runs belonging to the clusters.

In one embodiment, the configuration elements include an
element whose value has changed, and the dependency mod-
ule 508 is configured to identify dependencies between at
least one of the transactions and the element whose value has
changed. Optionally, the static analysis module 507 deter-
mines a change in the behavior of the software system as a
result of change of value of the element whose value has
changed. For example, the static analysis module 507 may
determine if different values of the element may lead to dif-
ferent expected control flows for a program and/or to a dif-
ferent expected data flows for the program. Thus, the static
analysis module 507 may determine which code elements are
impacted by the configuration element whose value has
changed.

In one embodiment, the computer system optionally
includes a first weighting module 513 that is configured to
weight a link from the first set of links 534, between a code
element and a transaction, according to the number of differ-

30

40

45

55

134

ent organizations associated with the link. An organization
may be considered associated with a link between a transac-
tion and a code element, if a user belonging to the organiza-
tion executed the transaction and during execution of the
transaction the code element was executed on a system
belonging to the organization. Optionally, the larger the num-
ber of organizations associated with a link, the higher the
weight of the link when used to identify dependencies
between transactions and configuration elements. Optionally,
the first weighting module 513 may be implemented as part of
the activity analyzer 504, e.g., the first weighting module 513
is a software module that is part of the software modules that
the activity analyzer 504 utilizes. Additionally or alterna-
tively, the first weighting module 513 may operate on the first
set of links 534 generated by the activity analyzer 504. For
example, the first weighting module 513 assigns a weight to at
least some of the links, while other links may have a default
weight. Optionally, the first set of links 534 may be filtered
according weights assigned by the first weighting module
513. For example, links that have a weight below a predeter-
mined threshold are not considered by the dependency mod-
ule 508. A large number of organizations associated with a
link may indicate that the link is one that is likely to be true for
other organizations (e.g., they are also likely have users that
run the same transaction and execute the same code element).

In one embodiment, the first weighting module 513 is
configured to weight a link from the first set of links 534,
between a code element and a transaction, according to the
number of users monitored while having an interaction with
the code element that is part of the transaction. Optionally, the
larger the number of users having the interaction with the
code element, the higher the weight of the link when used to
identify dependencies between transactions and configura-
tion elements. A large number of users having an interaction
with the code element that is part of the transaction may
indicate that other users are also likely to interact with the
same code element as part of their executing the transaction.

In one embodiment, the computer system optionally
includes a second weighting module 514 that is configured to
weight a link from the second set 538, between a configura-
tion element and a code element. Optionally, the link is
weighted according to the number of different organizations
associated with the link. In this embodiment, an organization
may be considered associated with a link between a configu-
ration element and a code element, if a system belonging to
the organization is both configured according to the configu-
ration element and executes the code element. For example,
the configuration element may be taken from a configuration
file belonging to the organization. Additionally, the code ele-
ment may be taken from the code base of the organization,
such as code of a certain software system used by the orga-
nization. Optionally, the larger the number of organizations
associated with a link, the higher the weight of the link when
used to identify dependencies between transactions and con-
figuration elements. A large number of organizations associ-
ated with a link may indicate that the link is one that is likely
to be true for other organizations (e.g., they are likely to run
the same code element involved in the link and/or apply the
same configuration element involved in the link). Optionally,
the second weighting module 514 may be implemented as
part of the static analysis module 507, e.g., the second weight-
ing module 514 is a software module that is part of the
software modules that the static analysis module 507 utilizes.
Additionally or alternatively, the second weighting module
514 may operate on the second links generated by the static
analysis module 507. For example, the second weighting
module 514 assigns a weight to at least some of the links,

US 9,317,404 B1

135

while other links may have a default weight. Optionally, the
second links may be filtered according weights assigned by
the second weighting module 514. For example, links that
have a weight below a predetermined threshold are not con-
sidered by the dependency module 508.

In one embodiment, the computer system optionally
includes a third weighting module 515 that is configured to
weight at least some of the dependencies 509 identified by the
dependency module 508. In one example, a dependency
between a transaction and a configuration element is to be
weighted. The dependency is based on a first link from the
first set between the configuration element and a code ele-
ment, and on a second link from the second set between the
code element and the transaction. Optionally, the weight of
the dependency may be assigned according to at least one of
weight of the first link (e.g., as assigned by the first weighting
module 513) and weight of the second link (e.g., as assigned
by the second weighting module 514). Optionally, if the first
link is missing a weight it is assigned a default weight. Simi-
larly, if the first link is missing a weight it is assigned a default
weight. Optionally, the weight assigned to the dependency is
a function of the weight of the first link and the weight of the
second link. For example, the weight of the dependency is the
sum of the weights of the first link and the weight of the
second link. In another example, the weight of the depen-
dency is the maximum of the weights of the first link and the
weight of the second link. Optionally, the third weighting
module 515 may be implemented as part of the dependency
module 508, e.g., the third weighting module 515 is a soft-
ware module that is part of the software modules that the
dependency module 508 utilizes. Additionally or alterna-
tively, the third weighting module 515 may operate on the
dependencies 509 generated by the dependency module 508.

In one embodiment, a business process includes at least
two transactions, and the activity analyzer is configured to
generate, based on the activity data 503, a first set of links
between business processes and code elements associated
with the business processes. Additionally, dependencies iden-
tified by the dependency module may be between business
processes and the configuration elements.

Itis to be noted that different embodiments may implement
components of the computer systems illustrated in FIG. 48
and FIG. 49 in different ways. For example, in some embodi-
ments one or more of the following may be implemented by
the same software module and/or software modules running
on the same processor: the activity analyzer 504, the static
analysis module 507, and the dependency module 508.
Optionally, one or more of the aforementioned components
may be implemented on a remote server, such as a cloud-
based server. Optionally, the cloud-based service suggests
test scenario templates suitable for users to test certain con-
figuration elements. Optionally, the monitoring module 502
and the template selector 510 are also realized, at least in part,
by modules of the cloud-based service that run on cloud-
based servers.

FIG. 50 illustrates one embodiment of a computer imple-
mented method for identifying dependencies between con-
figuration elements and transactions. The illustrated embodi-
ment includes the following steps:

In step 521, receiving activity data obtained by monitoring
activity of users belonging to different organizations; the
users operate software systems associated with the different
organization. Optionally, the software systems enable identi-
fication of at least some of the transactions executed on the
software systems. Additionally, at least some of the configu-
ration elements related to the system are identifiable. This

20

40

45

55

60

136

may enable connection between at least some of the configu-
ration elements and at least some of the transactions via code
elements.

In step 522, generating, based on the activity data, a first set
of links between the transactions and code elements associ-
ated with the transactions; each link in the first set is based on
activity data obtained from at least two different organiza-
tions. Optionally, the code elements include data of at least
one of the following types: procedures without specific invo-
cations, classes without specific invocations, database trig-
gers, stored procedures, screens, and tables in a database.
Optionally, a business process comprises at least two trans-
actions, and the first set of links corresponds to connections
between code elements and business processes.

In step 523, receiving the configuration elements.

In step 524, receiving code of a software system which
includes at least one of the following: procedure invocations,
user interface statements, and database access statements.

Instep 525, generating, based on static analysis of the code,
a second set of links between the configuration elements and
code elements influenced by the configuration elements.
Optionally, the second set of links is generated utilizing static
analysis of the code of the software system. Optionally, the
static analysis receives as input at least one of the following:
procedure invocations, and SQL statements.

And in step 526, identifying dependencies between the
transactions and the configuration elements by utilizing the
first set of links and the second set of links.

In one embodiment, the configuration elements include an
element whose value has changed, and identifying dependen-
cies between the transactions and the configuration elements
involves identifying dependencies between one or more of
the transactions and the element whose value has changed.

In one embodiment, identifying a dependency between a
certain transaction and a certain configuration element is
achieved by identifying a certain code element that is com-
mon both to a link from the second set, between the certain
configuration element and the certain code element, and to a
link from the first set, between the certain code element and
the certain transaction.

In one embodiment, the computer implemented method
illustrated in FIG. 50 includes an optional step of weighting
links in the first set according to number of different organi-
zations associated with the links. An organization is associ-
ated with a link between a transaction and a code element, if
a user belonging to the organization executed the transaction
and during execution of the transaction the code element was
executed on a system belonging to the organization. The
larger the number of different organizations associated a link,
the higher the weight of the link when used for the identifying
of the certain transaction impacted by the certain configura-
tion change.

In another embodiment, the computer implemented
method illustrated in FIG. 50 includes an optional step of
weighting a link between a code element and a transaction
according to number of users monitored while having an
interaction with the code element that is part of the transac-
tion. The larger the number of users having the interaction
with the code element, the higher the weight of the link when
used for the identifying of the certain transaction impacted by
the certain configuration change.

In yet another embodiment, the computer implemented
method illustrated in FIG. 50 includes an optional step of
weighting a link from the second set, between a configuration
element and a code element, according to number of different
organizations associated with the link. Optionally, an organi-
zation is considered associated with a link between a configu-

US 9,317,404 B1

137

ration element and a code element, if a system belonging to
the organization is both configured according to the configu-
ration element and executes the code element. Optionally, the
larger the number of organizations associated with a link, the
higher the weight of the link when used to identity dependen-
cies between transactions and configuration elements.

In still another embodiment, the computer implemented
method illustrated in FIG. 50 includes an optional step of
weighting a dependency between a transaction and a configu-
ration element, which is based on a first link from the first set
between the configuration element and a code element, and
on a second link from the second set between the code ele-
ment and the transaction. Optionally, the weight ofthe depen-
dency is assigned according to at least one of weight of the
first link and weight of the second link.

In one embodiment, the computer implemented method
includes optional step 520 which involves monitoring the
users belonging to the different organizations in order to
obtain the activity data.

In one embodiment, the computer implemented method
includes optional step 527 which involves receiving the cer-
tain configuration element. Optionally, the computer imple-
mented method also includes step 528 which involves select-
ing a test scenario template suitable for testing a transaction
that is dependent on the certain configuration element
received in step 527. Optionally, the test scenario template is
selected, at least in part, according to weights of the depen-
dencies. Optionally, the computer implemented method
includes optional step 529 which involves suggesting to auser
to run an instantiation of the test scenario template. Option-
ally, the suggestion is made via the user interface 512.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to identify dependencies between configuration elements and
transactions. The computer includes a processor, and the non-
transitory computer-readable medium stores the following
program code:

Program code for receiving activity data obtained by moni-
toring activity of users, belonging to different organizations,
running software systems in which the transactions and the
configuration elements are identifiable and can be connected
via code elements.

Program code for generating, based on the activity data, a
first set of links between the transactions and code elements
associated with the transactions; each link in the first set is
based on activity data obtained from at least two different
organizations. Optionally, the code elements include data
from at least one of the following types: procedures without
specific invocations, classes without specific invocations,
database triggers, stored procedures, screens, and tables in a
database. Optionally, a business process comprises at least
two transactions, and the first set of links corresponds to
connections between code elements and business processes.

Program code for receiving the configuration elements.

Program code for receiving code of a software system
which comprises at least one of the following: procedure
invocations, user interface statements, and database access
statements.

Program code for generating, based on static analysis of the
code, a second set of links between the configuration ele-
ments and code elements influenced by the configuration
elements. Optionally, the second set of links is generated
utilizing static analysis of the code of the software system.
Optionally, the static analysis receives as input at least one of
the following: procedure invocations, and SQL statements.
Optionally, the configuration elements include an element
whose value has changed, and identifying dependencies

10

15

20

25

30

35

40

45

50

55

60

65

138

between the transactions and the configuration elements
involves identifying dependencies between one or more of
the transactions and the element whose value has changed.

And program code for identifying dependencies between
the transactions and the configuration elements by utilizing
the first set of links and the second set of links.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for identifying a
dependency between a certain transaction and a certain con-
figuration element by identifying a certain code element that
is common both to a link from the second set, between the
certain configuration element and the certain code element,
and a link from the first set, between the certain code element
and the certain transaction.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting links
in the first set according to number of different organizations
associated with the links. An organization may be considered
associated with a link between a transaction and a code ele-
ment if a user belonging to the organization executed the
transaction and during execution of the transaction the code
element was executed on a system belonging to the organi-
zation. The larger the number of different organizations asso-
ciated a link, the higher the weight of the link for the identi-
fying of the certain transaction impacted by the certain
configuration change.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting a link
between a code element and a transaction according to num-
ber of users monitored while having an interaction with the
code element that is part of the transaction. The larger the
number of users having the interaction with the code element,
the higher the weight of the link for the identifying of the
certain transaction impacted by the certain configuration
change.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting a link
from the second set, between a configuration element and a
code element, according to number of different organizations
associated with the link. Optionally, an organization is asso-
ciated with a link between a configuration element and a code
element, if a system belonging to the organization is both
configured according to the configuration element and
executes the code element. The larger the number of organi-
zations associated with a link, the higher the weight of the link
when used to identify dependencies between transactions and
configuration elements.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting a
dependency between a transaction and a configuration ele-
ment, which is based on a first link from the first set between
the configuration element and a code element, and on a sec-
ond link from the second set between the code element and
the transaction. Optionally, the weight of the dependency is
assigned according to at least one of weight of the first link
and weight of the second link.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
users belonging to the different organizations for obtaining
the activity data.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for receiving a cer-
tain configuration element and selecting a test scenario tem-
plate suitable for testing a transaction that is dependent on the
certain configuration element. Additionally, the non-transi-
tory computer-readable medium may optionally store pro-
gram code for selecting the test scenario template based on

US 9,317,404 B1

139

weights of dependencies. Optionally, the non-transitory com-
puter-readable medium may store program code for suggest-
ing to a user to run an instantiation of the test scenario tem-
plate.

FIG. 52 and FIG. 53 illustrate embodiments of a computer
system configured to identify a certain transaction likely to be
impacted by a certain configuration change. The illustrated
embodiments include at least an activity analyzer 543, a pro-
gram analyzer 546, an intersection module 548, and a trans-
action identifier 550.

The activity analyzer 543 is configured to receive activity
data 542 obtained by monitoring activity of users 540 belong-
ing to different organizations. The activity of the users
involves operating software systems associated with the dif-
ferent organizations. Optionally, the activity data 542
includes runs of test scenarios. Optionally, some of the test
scenarios were run to test impact of configuration changes on
the software systems.

In one embodiment, the software systems enable identifi-
cation of at least some of the transactions executed on the
software systems. For example, a log-keeping procedure may
record identifying information regarding transactions per-
formed by a user. Additionally, at least some of the code
elements executed by interaction with the system are identi-
fiable. For example, at least some of the code elements
involve are run using an interpreter and/or a system that
enables association between binary code and/or byte code run
on the system and native “high-level” code. In one example,
the system may provide access to debug information

In one example, the software systems belonging to the
different organizations are SAP ERP systems. Optionally,
configurations involve database tables, and configuration
changes may involve changes to entries and/or attributes in
database tables. Monitoring the users involves monitoring of
the executed transactions (e.g., queries and returned values).

In another example, the software systems belonging to the
different organizations are Oracle ERP systems. Optionally,
configuration changes involve customization code and moni-
toring the users involves monitoring executed procedures.

In still another example, the software systems belonging to
the different organizations run Java Virtual Machines (JVM).
The JVMs enable associations at run-time between Java code
and transactions executed on the systems.

The activity analyzer 543 is also configured to identify,
based on the activity data 542, a first set of code elements
associated with transactions; each code element in the first set
is referred to in activity data of users belonging to at least two
different organizations. That is, for each code element in the
first set, there are at least two users, each user from a different
organization, for which their respective activity data includes
an indication that the code element was executed. For
example, there is a mentioning in a log file that a certain
transaction was run (where the transaction is known to
include the code element), or the activity data includes a result
that is generated by the code element.

In one embodiment, the activity data 542 includes a list of
business processes and/or transactions executed by the users
540. In one example, the business process and/or transactions
may be identified according to their names, identifier codes,
and/or descriptions (e.g., a list of fields in a screen involved in
a transaction). In another example, the activity data 542 may
indicate that a certain group of transactions was executed;
e.g., by mentioning that a certain protocol was tested (e.g.,
adding and removing an employee), it may be inferred that all
the transactions involved in the protocol were executed.
Optionally, the activity data 542 may include indications of
code executed by the users 540. For example, the indications

10

20

30

40

45

50

55

140

may be in the form of names of programs, portions of code,
hash values of code, and/or outputs that are typically gener-
ated by certain code (and thus may indicate that the certain
code was executed). Optionally, the activity data 542 includes
data that enables synchronization. For example, the activity
data may include time stamps and/or program counters (indi-
cating a position in code).

Based on the activity data 542, the activity analyzer 543
can pair between transaction executed by a user at a certain
time and corresponding code elements executed at the time.
In one example, the activity data 542 indicates a transaction
by name that was executed by a user. The activity analyzer
543 receives (as part of the activity data 542 and/or from
another source) code corresponding to the transaction, and
from the code, is able to identify code elements to be associ-
ated with the transaction. Optionally, a single code element is
associated with each transaction. Alternatively, multiple code
elements may be associated with a transaction (e.g., each
function executed in a transaction is associated with a differ-
ent code element). Additionally or alternatively, a single code
element may be associated with multiple different transac-
tions. For example, a code element corresponding to a certain
function may be associated with each different transaction
that involves running the certain function.

In one embodiment, the activity analyzer 543 generates
data indicative of associations between transactions and the
code elements. In one example, the data that associates
between transactions and the code elements includes a record
for each code element indicating transactions associated with
it. In another example, the data that associates transactions
and the code elements includes a record for each transaction
indicating code elements associated with it. Optionally, code
elements may be identified by their actual code, by identifiers
(e.g., path and/or file name, function name), and/or by hash
values of their code.

In one embodiment, the code elements are include data of
at least one of the following types: procedures without spe-
cific invocations, classes without specific invocations, data-
base triggers, stored procedures, screens, and tables in a data-
base.

The program analyzer 546 is configured to receive the
certain configuration change 544 and program data 545 (also
referred to as program code 545) that includes a description of
at least one of the following: procedure invocations, user
interface statements, and database access statements. Option-
ally, the program data 545 is received from the monitoring
module

Optionally, the certain configuration element 544 relates to
a software system belonging to a different organization than
organizations to which software systems related to the pro-
gram code 545 belong. Alternatively, the certain configura-
tion change 544 may related to a software system to which
some of the program data 545 belongs.

In one embodiment, procedure invocation may include any
call to a function, procedure and/or program by a calling
program. Optionally, a description of the procedure invoca-
tion may include an invocation statement that includes infor-
mation such as the name of the procedure and/or arguments
provided for an invocation of the procedure (e.g., values
placed on a memory stack to be utilized by the procedure).
Additionally or alternatively, a description of the procedure
invocation may include code corresponding to the procedure,
such as code to be executed by the invoked procedure.

In one embodiment, user interface statements may include
any commands and/or programs that result in retrieval, gen-
eration, and/or presentation of data to a user via a user inter-
face. Additionally or alternatively, user interface statements

US 9,317,404 B1

141

may include any commands and/or programs that result in
receiving, recording and/or processing of data provided by a
user to a system via a user interface. Additionally or alterna-
tively, user interface statements may include data provided by
a user to a system via the user interface and/or any data
provided by a system to a user via the user interface. Option-
ally, a description of user interface statements may include
the statements in a similar format to a format in which they are
provided to a computer system and/or received from the com-
puter system. Optionally, a description of user interface state-
ments may include a summary of the statements and/or cer-
tain information extracted from the statements. Optionally,
the user interface may include one or more apparatuses that
may receive information from a user, such as a keyboard,
touch screen, mouse, microphone, motion tracking appara-
tus, and/or eye tracking apparatus. Additionally or alterna-
tively, the user interface may include one or more apparatuses
that may provide information to a user, such as a screen, an
augmented and/or virtual reality display, speaker, printer,
and/or a haptic feedback device.

In one embodiment, database access statements may
include commands and/or programs that result in reading data
from a database, writing data to a database, and/or modifica-
tion of data in a database. Additionally or alternatively, data-
base access statements may include commands and/or pro-
grams that change attributes of a database, such as altering
columns in a database and/or changing access permissions to
certain data in a database. In one example, database access
statements may include SQL statements that operate on one
or more tables in a database. In another example, database
access statements may include CGI scripts that cause a sys-
tem to retrieve data from a database. Optionally, a description
of'database access statements may include the statements in a
similar format to a format in which they are provided to a
computer system and/or received from it. Optionally, a
description of database access statements may include a sum-
mary of the statements and/or certain information extracted
from the statements.

The program analyzer 546 is also configured to identify,
based on the program data 545, a second set of code elements
that are influenced by the certain configuration change 544.
Optionally, the program data 545 includes data related to
multiple software systems that may belong to one or more
different organizations. Optionally, the program analyzer 546
is configured to receive as input the certain configuration
change 544 and program data 545 that includes code of a
software system, and to perform static analysis in order to
identify the second set of code elements. Optionally, the static
analysis determines a change in the behavior of the software
system as a result of the certain configuration change 544.

Determining which code elements may be influenced by a
certain configuration change may be done using various com-
putational approaches. In some embodiments, static analysis
methods may be utilized by the program analyzer 546 in order
to identify the second set of code elements that may be influ-
enced by configuration changes.

In one embodiment, a code element may be said to be
influenced by a configuration change if due to the configura-
tion change, the code element is executed differently on a
software system. Optionally, the configuration change
involves a certain configuration element whose associated
value has changed. Optionally, if an execution of the code
element after the configuration change is different than a
previous execution of the code element, which took place
when the certain configuration element had a different value,
then the code element may be considered to be influenced by
the configuration change. Optionally, substantial differences,

10

15

20

25

30

35

40

45

50

55

60

65

142

between the execution of the code and the previous execution
of'the code, are due to the configuration change. For example,
in both executions the same input values are provided by a
user to a system executing the code element, however, due to
the configuration change, the outcomes were different.

In one embodiment, two executions of a code element may
be considered different if they follow a different control path,
i.e., there is a certain command that is executed in one execu-
tion that was not executed in the other. Optionally, two execu-
tions of a code element may be considered different if they
generate different values, i.e., there is a certain value gener-
ated in one execution which was not generated in the other.

There are several approaches that may be utilized by one
skilled in the art for performing static analysis in order to
identify code elements that may be influenced by a configu-
ration change. In one embodiment, data flow analysis is used
to detect certain code elements that may be affected by a
configuration change. For example, according to the data flow
analysis it may be determined that a configuration element
whose value has changed may be utilized at some point, or
under certain conditions, by a code element. Consequently,
the program analyzer 546 may determine that the configura-
tion element and/or a configuration change that changes a
value associated with the configuration element, may influ-
ence the code element. In another embodiment, control flow
analysis may be utilized to detect certain code elements that
may be affected by certain configuration changes. For
example, flow analysis of code may reveal that a configura-
tion change, which involves a new value to a configuration
element, may affect the program in certain ways; for example,
causing the program to access the new value may cause cer-
tain new statements to be executed. Thus, the program ana-
lyzer 546 may determine, based on the flow analysis, that the
configuration change influences code elements correspond-
ing to the certain statements. Additional details and examples
of the use of static analysis for determining impact of con-
figuration changes may be found in Dor et al. “Customization
change impact analysis for ERP professionals via program
slicing”, in the Proceedings of the 2008 international sympo-
sium on Software testing and analysis, ACM, 2008.

In some embodiments, the program analyzer 546 identifies
multiple code elements that may be influenced by the certain
configuration change 544. For example, by using static and/or
dynamic analysis methods the program analyzer 546 may
generate a large list of code elements that may to varying
degrees be influenced by the certain configuration change
544. The list may need to undergo additional refinement, e.g.,
by external software and/or human experts in order to select a
subset of code elements that are influenced by the certain
configuration change 544.

In some embodiments, the amount of program data 545
may be very large and/or the number of configuration changes
and/or the number of configuration elements involved in the
configuration changes may be large. Analyzing the entire
body of program code 545 with respect to the configuration
changes may be prohibitive. Therefore, in some cases, the
program analyzer 546 may perform analysis primarily of a
subset of the program code 545 and/or consider a subset of the
configuration changes.

In one example, the program analyzer 546 may focus a
relatively larger portion of the analysis effort towards con-
figuration elements corresponding to the certain configura-
tion change 544. This may be done as opposed to investing
essentially similar efforts towards configuration elements
that have not changed. Optionally, based on determining
which configuration elements have associated values that
have changed (e.g., they are involved in the certain configu-

US 9,317,404 B1

143

ration change 544), the program analyzer 546 can determine
which subsets of the program code 545 are likely to be
affected by the certain configuration change 544, and perform
analysis primarily on the subsets of code.

In another example, the program analyzer 546 receives a
certain field of operation of a certain organization (e.g., the
field of operation may be banking or automotive industry).
Based on the field of operation, the program analyzer 546
may determine a subset of the code elements that are typically
used by organizations that are in the same field. The program
analyzer 546 may then focus analysis efforts more on the
subset of the code.

In one embodiment, the program analyzer 546 generates
data that associates between the certain configuration change
544 and code elements influenced by it. In one example, data
that associates between configuration changes and code ele-
ments includes a record for each code element indicating
configuration changes that influence it. In another example,
data that associates between configuration changes and code
elements includes a record for each configuration change
indicating code influenced by it. Optionally, code elements
may be identified by their actual code, by identifiers (e.g.,
path and/or file name, function name), and/or by hash values
of their code.

The intersection module 548 is configured to calculate an
intersection between the first set of code elements and the
second set of code elements. Optionally, the intersection is
computed explicitly. For example, the code elements in the
first set are compared to the code elements in the second set,
and code elements common to both sets are placed in the
intersection. In another example, the intersection is calcu-
lated by comparing identifiers and/or hash values of the code
elements in the first and second sets. Optionally, the intersec-
tion module 548 receives data that associates between the
certain configuration change 544 and code elements influ-
enced by it and/or data indicative of associations between
transactions and the code elements.

In one embodiment, an intersection between the first and
second sets of code elements is computed as needed. For
example, given a code element in the first set, the second set
may be examined in order to determine whether the code
element also appears in it. In one example, code elements are
identified by identifiers and/or hash values of the code ele-
ments; thus, looking up a certain code element in one of the
sets may be done efficiently.

The transaction identifier 550 is configured to identify the
certain transaction 551 likely to be impacted by the certain
configuration change based on a common code element
belonging to the intersection. Optionally, the common code
element is a code element that is associated with the certain
transaction 551, based on analysis of the activity analyzer
543. Additionally, the common code element is influenced by
the certain configuration change 544, according to analysis of
the program analyzer 546. Thus, based on the common code
element, it may be inferred that the certain transaction 551 is
likely to be influenced by the certain configuration change
544.

In one embodiment, the intersection module 548 and trans-
action identifier 550 are realized by the same software mod-
ule. For example, the intersection may be computed implic-
itly by the transaction identifier 550 according to data
received from the activity analyzer 543 and/or the program
analyzer 546; the transaction identifier 550 may generate a
list of transactions likely to be influenced by the certain con-
figuration 544 (e.g., a list of widely used transactions), and

10

15

20

25

30

35

40

45

50

55

60

65

144

further refine the list based on information related to common
code elements received from the activity analyzer 543 and/or
the program analyzer 546.

In one embodiment, the computer system optionally
includes a monitoring module 541 configured to monitor the
activity of the users 540 belonging to the different organiza-
tions and to provide the activity data 542 obtained from the
monitoring to the activity analyzer 543.

In one embodiment, the computer system optionally
includes a template selector 557. The template selector 557 is
configured to receive the transaction 551 and to select a test
scenario template suitable for testing the certain transaction
551. Optionally, the selection by the template selector 557
may be based on weight assigned to code elements belonging
to the first set, the second set, and/or the intersection. Option-
ally, the weight is assigned to the code element by a first
weighting module 554, a second weighting module 555, and/
or a third weighting module 556. For example, the template
selector 557 may a template which includes a code element
that receives a high weight.

In one embodiment, the template selector 557 selects the
test scenario template suitable for testing the certain transac-
tion 551 from among templates generated from the activity
data 542. Optionally, the templates are generated from runs of
test scenarios identified from the activity data 542. Option-
ally, the runs are clustered into clusters of similar runs, and
each template is generated from one or more runs belonging
to a same cluster. Optionally, the selection of the template at
least in part on the number of different users and/or different
organizations associated with runs belonging to the clusters.

In one embodiment, the computer system optionally
includes a first weighting module 554 that is configured to
weight code elements in the first set according to a number of
users monitored while having an interaction with the code
element as part of a transaction (e.g., users that ran a class,
accessed a screen, or updated a database). The larger the
number of users having an interaction with a code element,
the higher the weight of the code element when used to
identify the certain transaction likely to be impacted by the
certain configuration change. Optionally, a large weight of a
code element may indicate that the code element is widely
used by many users, and thus is likely to be relevant to other
users.

In one embodiment, the first weighting module 554 is
configured to weight code elements in the first set according
to a number of different organizations associated with the
code elements. An organization may be considered associated
with a code element, if a user belonging to the organization
interacts with the code element on a system belonging to the
organization. The larger the number of different organiza-
tions associated a code element, the higher the weight of the
code element when used to identify the certain transaction
likely to be impacted by the certain configuration change.
Optionally, a large weight of a code element may indicate that
the code element is widely used by many organizations, and
thus is likely to be relevant to other organizations.

In one embodiment, the first weighting module 554 may be
implemented as part of the activity analyzer 543, the inter-
section module 548, and/or the transaction identifier 550. For
example, the first weighting module 554 is a software module
that is part of software modules utilized by the activity ana-
lyzer 543, the intersection module 548, and/or the transaction
identifier 550. Optionally, the code elements of the first set
may be filtered according weights assigned by the first
weighting module 554. For example, code elements that have
a weight below a predetermined threshold are not considered
by the intersection module 548.

US 9,317,404 B1

145

In one embodiment, the computer system optionally
includes a second weighting module 555 configured to
weight code elements in the second set according to number
of different organizations associated with the code elements.
Optionally, an organization may be considered associated
with a code element, if program data associated with the
organization includes the code element. The larger the num-
ber of different organizations associated a code element, the
higher the weight of the code element when used to identify
the certain transaction likely to be impacted by the certain
configuration change. Optionally, a large weight of a code
element may indicate that the code element is widely used by
many organizations, and thus is likely to be relevant to other
organizations. Optionally, the second weighting module 555
may be implemented as part of the program analyzer 546, the
intersection module 548, and/or the transaction identifier 550.
For example, the second weighting module 555 is a software
module that is part of software modules utilized by the pro-
gram analyzer 546, the intersection module 548, and/or the
transaction identifier 550. Optionally, the code elements of
the second set may be filtered according weights assigned by
the second weighting module 555. For example, code ele-
ments that have a weight below a predetermined threshold are
not considered by the intersection module 548.

In one embodiment, the computer system optionally
includes a third weighting module 556 that is configured to
weight code elements belonging to the intersection based on
at least one of weights of code elements in the first set and
weights of code elements in the second set. Optionally, the
weight assigned to a code element belonging to the intersec-
tionis a function of a first weight assigned to the code element
by the first weighting module 554 and/or a second weight
assigned to the code element by the second weighting module
555. For example, the weight of the code element may be the
sum of the first and second weights. In another example, the
weight of the code element is the maximum of the first and
second weights. Optionally, the third weighting module 556
may be implemented as part of the intersection module 548
and/or the transaction identifier 550. For example, the third
weighting module 556 is a software module that is part of
software modules utilized by the intersection module 548
and/or the transaction identifier 550.

In one embodiment, a business process includes at least
two transactions, and the activity analyzer 543 is configured
to identify, based on the activity data 542, a first set of code
elements associated with the business processes. Addition-
ally, transaction identifier 550 may identify a certain business
process that is likely to be impacted by the certain configu-
ration change 544.

FIG. 54 illustrates one embodiment of a computer imple-
mented method for identifying a certain transaction likely to
be impacted by a certain configuration change. The illustrated
embodiment includes the following steps:

In step 560, receiving activity data of users belonging to
different organizations. The users operate software systems
associated with the different organizations, and at least part of
the activity data is related to the operation of the software
systems by the users. Optionally, the software systems enable
identification of at least some of the transactions executed on
the software systems. Additionally, at least some code ele-
ments executed by interaction with the system are identifi-
able. For example, at least some of the code elements involve
are run using an interpreter and/or a system that enables
association between binary code and/or byte code run on the
system and native “high-level” code.

Instep 561, identifying, based on the activity data, a first set
of code elements associated with transactions. Each code

40

45

55

65

146

element in the first set is referred to in activity data of users
belonging to at least two different organizations.

In step 562, receiving the certain configuration change and
program data that includes a description of at least one of the
following: procedure invocations, user interface statements,
and database access statements.

In step 563, identifying, based on the program data, a
second set of code elements that are influenced by the certain
configuration change.

In one embodiment, the first and second sets of code ele-
ments comprise code elements of at least one of the following
types: procedures without specific invocations, classes with-
out specific invocations, database triggers, stored procedures,
screens, and tables in a database.

In one embodiment, the identitying of the second set of
code elements involves running static analysis on the certain
configuration change and code of a software system. Option-
ally, the static analysis determines a change in the behavior of
the software system as a result of the certain configuration
change.

In step 564, intersecting between the first set of code ele-
ments and the second set of code elements,

And instep 565, identifying the certain transaction likely to
be impacted by the certain configuration change based on a
common code element belonging to the intersection.

In one embodiment, the computer implemented method
illustrated in FIG. 54 includes an optional step of weighting
code elements in the first set according to number of different
organizations associated with the code elements. Optionally,
an organization is associated with a code element, if a user
belonging to the organization executed the code element on a
system belonging to the organization. Optionally, the larger
the number of different organizations associated with a code
element, the higher the weight of the code element for the
identifying of the certain transaction impacted by the certain
configuration change.

In another embodiment, the computer implemented
method illustrated in FIG. 54 includes an optional step of
weighting code elements in the first set according to number
of users monitored having an interaction with the code ele-
ments as part of transactions. The larger the number of users
having the interaction with the code elements, the higher the
weight of the code element for the identifying of the certain
transaction impacted by the certain configuration change.

In yet another embodiment, the computer implemented
method illustrated in FIG. 54 includes an optional step of
weighting code elements in the second set according to num-
ber of different organizations associated with the code ele-
ments. Optionally, an organization is associated with a code
element, if program data associated with the organization
includes the code element. The larger the number of different
organizations associated a code element, the higher the
weight of the code element for the identifying of the certain
transaction impacted by the certain configuration change.

In still another embodiment, the computer implemented
method illustrated in FIG. 54 includes an optional step of
weighting code elements belonging to the intersection based
on at least one of weights weight code elements in the first set
and weights of code elements in the second set.

In one embodiment, the computer implemented method
includes optional step 566 which involves selecting a test
scenario template suitable for testing the at least one of the
transactions. Additionally, the computer implemented
method may include optional step 567 which involves sug-
gesting to a user to run the selected test scenario template.

In one embodiment, the computer implemented method
includes optional step 559 which involves monitoring the

US 9,317,404 B1

147

activity of the users belonging to the different organizations in
order to obtain the activity data.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to identify a certain transaction impacted by a certain con-
figuration change. The computer includes a processor, and the
non-transitory computer-readable medium stores the follow-
ing program code:

Program code for receiving activity data of users belonging
to different organizations; the users operate software systems
associated with the different organizations.

Program code for identifying, based on the activity data, a
first set of code elements associated with transactions; each
code element in the first set is referred to in activity data of
users belonging to at least two different organizations.

Program code for receiving the certain configuration
change and program data includes a description of at least one
of the following: procedure invocations, user interface state-
ments, and database access statements.

Program code for identifying, based on the program data, a
second set of code elements that are influenced by the certain
configuration change.

Program code for intersecting between the first set of code
elements and the second set of code elements.

And program code for identifying the certain transaction
impacted by the certain configuration change based on a
common code element belonging to the intersection.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting code
elements in the first set according to number of different
organizations associated with the code elements. An organi-
zation may be considered associated with a code element, if a
user belonging to the organization executed the code element
on a system belonging to the organization. Optionally, the
larger the number of different organizations associated with a
code element, the higher the weight of the code element for
the identifying of the certain transaction impacted by the
certain configuration change.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting code
elements in the first set according to number of users moni-
tored while having an interaction with the code elements as
part of transactions. Optionally, the larger the number ofusers
having the interaction with the code elements, the higher the
weight of the code element for the identifying of the certain
transaction impacted by the certain configuration change.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting code
elements in the second set according to number of different
organizations associated with the code elements. An organi-
zation may be associated with a code element, if program data
associated with the organization comprises the code element.
Optionally, the larger the number of different organizations
associated a code element, the higher the weight of the code
element for the identifying of the certain transaction impacted
by the certain configuration change.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for weighting code
elements belonging to the intersection based on at least one of
weights weight code elements in the first set and weights of
code elements in the second set.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting a test
scenario template suitable for testing the at least one of the
transactions, and program code for suggesting to a user to run
the selected test scenario template.

10

15

20

25

30

35

40

45

50

55

60

65

148

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
activity of the users belonging to the different organizations in
order to obtain the activity data.

FIG. 55 illustrates one embodiment of a computer system
configured to select a transaction for a certain user based on
similarity of a profile of the certain user to profiles of users
belonging to different organizations. The illustrated embodi-
ment includes at least a transaction identifier 804, a profile
generator 805, and a transaction recommender 806.

The transaction identifier 804 is configured receive activity
data 802 obtained by monitoring activity of the users on
software systems belonging to the different organizations.
Optionally, the activity data 802 is obtained from monitoring
the users 800. The transaction identifier 804 is also configure
to identify from the activity data 802 transactions that are run
by the users. Optionally, the transactions are run as part of
tests. Optionally, the transaction identifier 804 also identifies
possible values that may be used by the transactions. Option-
ally, the users belong to the different organizations, i.e., each
user belongs to an organization of the different organizations.

The profile generator 805 is configured to generate profiles
of'the users based on the transactions. Optionally, each profile
of'a user indicates transactions executed by the user. Option-
ally, an indication of the transactions in the profile of the user
may be direct. For example, the profile of the user includes
identifiers of transactions and/or includes the transactions
themselves (e.g., commands or code of the transactions).
Optionally, the indication of transactions in the profile of the
user may be indirect. For example, the profile may list test
scenarios and/or templates utilized by the user. Optionally,
the test scenarios and/or templates may be known to involve
certain transactions. For example, a description of a test sce-
nario and/or template may include a description of transac-
tions that are to be executed when running the test scenario
and/or running an instantiation of the template.

The transaction recommender 806 is configured to receive
aprofile 807 of the certain user. The transaction recommender
806 is also configured to select, based on at least some of the
profiles of the users and the profile 807 of the certain user, a
certain transaction 808 from among transactions that are indi-
cated in the profiles of the users, which is appropriate for the
certain user. Optionally, the certain user belongs to a certain
organization that is not one of the different organizations.
Optionally, the certain transaction 808 is indicated in a profile
of at least one user with a similar profile to the profile 807 of
the certain user. Additionally or alternatively, the certain
transaction 808 was executed by at least one user with a
similar profile to the profile 807 of the certain user.

In one embodiment, the certain transaction 808 was not
executed by the certain user and/or does not appear in the
profile 807 of the certain user. Optionally, the certain trans-
action 808 was not executed by a user belonging to the certain
organization and/or does not appear in a profile of a user
belonging to the certain organization.

In one embodiment, the profile 807 of the certain user
indicates transactions executed by the certain user. Addition-
ally or alternatively, the profile 807 may indicate runs of test
scenarios run by the certain user, clusters of runs, and/or
templates which were utilized by the certain user (e.g., the
certain user ran instantiations of the template). By comparing
the profile of the certain user to profiles of the users, it is
possible to identify profiles of users that are similar to the
profile 807 of the certain user. For example, at least some of
the transactions executed by the certain user were also
executed by users that have similar profiles to the profile 807
of the certain user.

US 9,317,404 B1

149

In one embodiment, the profile 807 is generated by the
profile generator 805. Optionally, the profile 807 is generated
based on activity data of the certain user that is provided to the
transaction identifier 804.

In one embodiment, both the profiles of the users and the
profile 807 of the certain user may contain the same type of
data. For example, both the profiles of the users and the profile
807 of the certain user may contain indications of transaction
that were executed (e.g., by listing identifiers of the transac-
tions and/or commands that execute the transactions). In such
a case, a comparison between profiles may be straightfor-
ward. For example, counting the number and/or proportion of
transactions that are common to two profiles. In another
example, having the same type of data in the profiles makes it
easy to convert them to vectors in the similar space, and then
to utilize similarity functions that may be applied to vectors
(e.g., vector dot-product or Pearson correlation).

In one embodiment, the profiles of the users and the profile
807 of the certain user may contain different types of data.
Thus, comparing between a profile of a user and a profile 807
of'the certain user may require additional actions that convert
a representation of a profile that uses one type of data to a
representation using another type of data. In one example, the
profile 807 of the certain user may include templates of test
scenarios run by the certain user and the profiles of the users
may include indications of transactions executed by the users.
In such a case, it may be necessary to determine which trans-
actions are involved when running instantiations of the tem-
plates listed in the profile 807 in order to be able to compare
the profile 807 with the profiles of the users.

In one embodiment, the certain user is a generic user of the
certain organization. For example, the profile 807 of the cer-
tain user may indicate transactions executed by one or more
users from the certain organization. Additionally or alterna-
tively, the profile 807 may list transactions suggested to be
utilized by users of the certain organization. Optionally, the
computer system may utilize collaborative filtering to suggest
additional transactions that may be utilized by users of the
certain organization.

There are several ways in which the transaction recom-
mender 806 can utilize the profiles of the users and the profile
807 of the certain user in order to select the certain transaction
808. One approach that may be used by the transaction rec-
ommender 806 is to find profiles among the profiles of the
users that are similar to the profile 807, and to select the
certain transaction 808 based on transactions indicated by the
similar profiles. In one example, if a profile of a user that is
similar to the profile 807 lists transactions executed by the
user, then the certain transaction 808 may be one of the listed
transactions. In another example, if a profile of a user that is
similar to the profile 807 lists templates utilized by the user,
then the certain transaction 808 may be a transactions
executed when running an instantiation of one of the listed
templates.

In one example, the transaction recommender 806 identi-
fies transactions that are indicated in at least one profile of a
user that is similar to the profile 807. From amongst the
transactions, the transaction recommender 806 may select the
certain transaction 808 based on the number of different users
that executed the transactions. For example, the certain trans-
action 808 may be a transaction that is indicated as executed
in at least one profile of a user that is similar to the profile 807
and is a transaction that was executed by a largest number of
users. That is, there is no other transaction that was executed
by a larger number of users which is also indicated as
executed in a profile that is similar to the profile 807. Option-
ally, the fact that the certain transaction 808 was executed by

30

40

45

150

many users is indicative of the fact that it is likely to be a
transaction that may be utilized by the certain user.

In another example, the transaction recommender 806
identifies transactions that are indicated in at least one profile
of a user that is similar to the profile 807; from amongst the
transactions, the transaction recommender 806 may select the
certain transaction 808 based on the number of different
organizations that have users that executed the transactions.
For example, the certain transaction 808 may be a transaction
that is indicated as executed in at least one profile of a user that
is similar to the profile 807 and is a transaction that was
executed by users belonging to a largest number of organiza-
tions. That is, there is no other transaction that was executed
by the users belonging to a larger number of organizations,
which is also indicated as executed in a profile that is similar
to the profile 807. Optionally, the fact that the certain trans-
action 808 was executed by users belonging to many organi-
zations is indicative of the fact that it is likely to be a trans-
action that may be utilized by the certain user.

In yet another example, the transaction recommender 806
identifies profiles of users that are similar to the profile 807 of
the certain user. For example, the profiles are embedded in a
metric space, and the transaction recommender 806 finds
profiles that are closest to the profile 807 in the metric space.
From one or more profiles closest to the profile of the certain
user, the transaction recommender 806 selects the certain
transaction 808. Optionally, the certain transaction 808 has
not been executed by the certain user (as indicated by the
profile 807). Optionally, the certain transaction 808 is indi-
cated as utilized in a profile that is most similar to the profile
807.

In one embodiment, the transaction recommender 806 uti-
lizes a collaborative filtering algorithm, such as a memory-
based algorithm, a model-based algorithm, or a hybrid
approach. Optionally, the collaborative filtering algorithm
selects the certain transaction 808 based on one or more
profiles found by the collaborative filtering algorithm to be
similar to the profile 807 of the certain user. Optionally,
recommendations of the collaborative filtering algorithm are
filtered to exclude transaction that have already been executed
by the certain user.

In one embodiment, the transaction recommender 806 may
select the certain transaction 808 by providing an identifier of
the certain transaction 808 (e.g., a transaction identification
number). Alternatively or additionally, selecting the certain
transaction 808 is done by the transaction recommender 806
by providing one or more test scenarios and/or templates that
involve the certain transaction 808. Optionally, the one or
more test scenarios and/or templates may be used to test
execution of the certain transaction.

In one embodiment, the computer system optionally
includes a template generator 810, which is configured to
generate a test scenario template that involves execution of
the certain transaction 808. Optionally, the template genera-
tor 810 is configured to generate the test scenario template
based on transactions executed by one or more users with
similar profiles to the profile of the certain user. For example,
the template may include several transactions that appear in a
profile of a user that is similar to the profile 807.

The computer system may also optionally include a cus-
tomization module 812 that is configured to customize the
test scenario template for the certain user by adding to the test
scenario template proprietary data relevant to the certain user.
Optionally, at least some of the proprietary data is obtained
from the profile 807. Additionally, the computer system may

US 9,317,404 B1

151

optionally include a user interface 813 configured to suggest
to the certain user to run an instantiation of the test scenario
template.

FIG. 56 illustrates one embodiment in which the certain
transaction 808 is provided to a template selector 815.
Optionally, the template selector is configured to select a test
scenario template that involves execution of the certain trans-
action 808. Optionally, the test scenario template may be used
to test whether the certain transaction 808 is executed cor-
rectly on a software system. Optionally, the test scenario
template may be customized by the customization module
812 for the certain user by adding to the test scenario template
proprietary data relevant to the certain user. Optionally, at
least some of the proprietary data is obtained from the profile
807. Additionally, the template may be suggested to the cer-
tain user via the user interface 813.

In one embodiment, the computer system optionally
includes the monitoring module 801 which is configured to
monitor activity of the users 800. Optionally, the users 800 are
running test scenarios on the software systems of the different
organizations. Optionally, the monitoring module 801 is con-
figured to provide data obtained from the activity data 802 to
the transaction identifier 804.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 55
and/or FIG. 56 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
801, the transaction identifier 804, the profile generator 805,
the transaction recommender 806, the template generator
810, the template selector 815, the customization module
812, and the user interface 813. Additionally, one or more of
the aforementioned components may be implemented on a
remote server, such as a cloud-based server.

FIG. 57 illustrates one embodiment of a computer imple-
mented method for selecting a transaction for a certain user
based on similarity of a profile of the certain user to profiles of
users belonging to different organizations. The illustrated
embodiment includes the following steps: In step 821, receiv-
ing activity data obtained by monitoring activity of the users
on software systems belonging to the different organizations.

In step 822, identifying transactions executed by the users
on the software systems.

In step 823, generating profiles of the users based on the
transactions; a profile of a user indicates transactions
executed by the user.

In step 824, receiving a profile of the certain user; the
certain user belongs to a certain organization that is not one of
the different organizations. The profile of the certain user
indicates transactions executed by the certain user on a soft-
ware system belonging to the certain organization.

And in step 825 selecting, based on similarity of at least
some of the profiles of the users to the profile of the certain
user, a certain transaction. The certain transaction is a trans-
action that was executed by a user with a similar profile to the
profile of the certain user. Optionally, the certain transaction
was not executed by the certain user. Optionally, the certain
transaction was not executed by a user belonging to the cer-
tain organization. Optionally, the certain transaction was
executed by a user with a profile that is most similar, amongst
the profiles of the users, to the profile of the certain user.

In one embodiment, selecting the certain transaction in step
825 is based on the number of different users that executed the
transactions. For example, the certain transaction may be a
transaction that is indicated as executed in at least one profile

10

15

20

25

30

35

40

45

50

55

60

65

152

of'a user that is similar to the profile of the certain user, and is
a transaction that was executed by a largest number of users.

In another embodiment, selecting the certain transaction in
step 825 is based on the number of different organizations
with users that executed the transactions. For example, the
certain transaction may be a transaction that is indicated as
executed in at least one profile of a user that is similar to the
profile of the certain user, and is a transaction that was
executed by users belonging to a largest number of organiza-
tions.

In one embodiment, the computer method optionally
includes step 820 that involves monitoring the activity of the
users belonging to the different organizations and providing
the activity data for the identifying of the transactions.

In one embodiment, the computer method illustrated in
FIG. 57 optionally includes a step involving generating a test
scenario template based on the certain transaction. Addition-
ally, the computer method may optionally include a step
involving generating the test scenario template based on
transactions executed by one or more users with similar pro-
files to the profile of the certain user. Additionally, the com-
puter method may optionally include a step involving cus-
tomizing the test scenario template for the certain user by
adding to the test scenario template proprietary data relevant
to the certain user.

In one embodiment, the computer method optionally
includes step 826 which involves selecting a test scenario
template that involves execution of the certain transaction.
Additionally, the computer method may optionally include
step 827, which involves suggesting to the certain user to run
an instantiation of the test scenario template.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to select a transaction for a certain user based on similarity of
a profile of the certain user to profiles of users belonging to
different organizations. The computer includes a processor,
and the non-transitory computer-readable medium stores the
following program code:

Program code for receiving activity data obtained by moni-
toring activity of the users on software systems belonging to
the different organizations.

Program code for identifying transactions executed by the
users on the software systems.

Program code for generating profiles of the users based on
the transactions; a profile of a user indicates transactions
executed by the user.

Program code for receiving a profile of the certain user; the
certain user belongs to a certain organization that is not one of
the different organizations. The profile of the certain user
indicates transactions executed by the certain user on a soft-
ware system belonging to the certain organization.

And program code for selecting, based on similarity of at
least some of the profiles of the users to the profile of the
certain user, a certain transaction; the certain transaction was
executed by a user with a similar profile to the profile of the
certain user. Optionally, the certain transaction was not
executed by the certain user. Optionally, the certain transac-
tion was not executed by a user belonging to the certain
organization.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting the
certain transaction based on number of different users that
executed the transactions.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting the
certain transaction based on number of different organiza-
tions with users that executed the transactions.

US 9,317,404 B1

153

wherein the certain transaction was executed by a user with
aprofile that is most similar, amongst the profiles of the users,
to the profile of the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
activity of the users belonging to the different organizations
and providing the activity data for the identifying of the
transactions.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for generating a test
scenario template based on the certain transaction. Addition-
ally, the non-transitory computer-readable medium may
optionally store program code for generating the test scenario
template based on transactions executed by one or more users
with similar profiles to the profile of the certain user. Addi-
tionally, the non-transitory computer-readable medium may
optionally store program code for customizing the test sce-
nario template for the certain user by adding to the test sce-
nario template proprietary data relevant to the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting a test
scenario template that comprises execution of the certain
transaction. Additionally, the non-transitory computer-read-
able medium may optionally store program code for suggest-
ing to the certain user to run an instantiation of the test
scenario template.

FIG. 58 and FIG. 59 illustrate embodiments of a computer
system configured to select a test scenario template for a
certain user based on similarity of a profile of template utili-
zation by the certain user to profiles of template utilization by
other users. The illustrated embodiments include at least a
template identifier 854, a profile generator 856, a profile
comparator 858, and a template selector 860.

The template identifier 854 is configured to receive runs of
test scenarios, run by a certain user belonging to a certain
organization on a software system belonging to the certain
organization. The template identifier 854 is also configured to
identify, from the runs, test scenario templates utilized by the
certain user. Optionally, a template may be considered uti-
lized by a user if the user runs an instantiation of the template.
For example, if the certain user ran an instantiation of a
template on the software system belonging to the certain
organization, the template may be considered to be utilized by
the certain user. Optionally, the runs of the test scenarios may
include scripts and/or commands from which the template
identifier 854 may determine templates that correspond to the
runs.

In one embodiment, the runs of the test scenarios include
information that indicates for each run of a test scenario a
template from which the test scenario was instantiated. For
example, the run may include an identifier of the template
and/or code corresponding to the template. The template
identifier 854 utilizes the information to identify the tem-
plates utilizes by the certain user. For example, each template
indicated in a run as being a template from which the run was
instantiated is considered by the template identifier 854 to be
a template utilized by the certain user.

In another embodiment, the runs of the test scenarios are
associated with clusters of runs of test scenarios. For
example, the runs that may be assigned to the clusters (e.g., by
a clustering algorithm or by a classifier). Optionally, each of
the clusters may be represented by at least one test scenario
template. Thus, the test identifier 854 may utilize the cluster
associations, along with identifications of templates that rep-
resent the clusters, in order to identify the templates utilized
by the certain user. For example, a template utilized by the

20

35

40

45

50

154

certain user may be a template representing a cluster to which
a run of the certain user belongs.

In yet another embodiment, the runs of the test scenarios
may be compared to various templates in order to identify
templates that are similar to the runs. The test identifier 854
may utilize information regarding similarity of templates to
runs in order to identify the templates utilized by the certain
user. For example, the test identifier 854 may consider a
template that has similarity to a run that exceeds a predeter-
mined threshold to be utilized by the certain user. Optionally,
in order to compare a run and template, the run is compared to
another run instantiated from the template. Optionally, com-
paring a run to a template takes into account similar data in the
run and the template. For example, a comparison between a
run and a template may take into account field names that
appeared in screens in the run and screens in the template, but
the comparison may ignore user input that is recorded in the
run which may not be part of the template.

The profile generator 856 is configured to generate a profile
857 of the certain user based on the test scenario templates.
The profile 857 includes indications of test scenario templates
utilized by the certain user. Thus, the profile 857 may be
considered a profile of utilization of templates. Optionally,
indications of the templates utilized by the certain user may
be direct indications. For example, the profile 857 includes
identifiers of templates and/or the templates themselves (e.g.,
code of the templates). Optionally, the indications of the
templates utilized by the certain user may be indirect indica-
tions. For example, the profile may list runs of test scenarios
instantiated from the templates.

The profile comparator 858 is configured to receive the
profile 857 of the certain user and profiles 859 of users
belonging to different organizations. Optionally, the certain
organization is not one of the different organizations. Option-
ally, the profiles indications of test scenario templates utilized
by the users. Optionally, the indications may be direct indi-
cations and/or indirect indications.

In one embodiment, the template identifier 854 may be
utilized to identify templates from runs of test scenarios run
by the users belonging to the different organizations on soft-
ware systems belonging to the different organizations.
Optionally, the runs of test scenarios may be included in the
profiles 859. Additionally or alternatively, the profile genera-
tor 856 may be utilized, at least in part, to generate the profiles
859 of the users.

The profile comparator 858 is also configured to compare
between the profile 857 of the certain user and the profiles 859
of'the users, and to identity at least one profile of a user, from
among the profiles 859, which is similar to the profile 857.

In some embodiments, determining whether two profiles
are similar and/or degree of similarity of the two profiles
requires comparison of templates belonging to each of the
two profiles. The comparison may identify pairs of templates
that are identical in the two profiles (e.g., a first template from
a first profile that is identical to a second template from a
second profile). Additionally, the comparison may involve
identifying pairs of templates that are similar from the two
profiles, and/or degree of similarity of pairs of templates from
the two profiles. Determining identity and/or similarity of
pairs of templates may be done in various ways.

In one example, two test scenario templates may be con-
sidered identical if they are identified by a same identifier
(e.g., template identification number), contain the same code,
involve the same screens, are based on the same script, are
generated from the same runs of test scenarios and/or involve
execution of the same transactions.

US 9,317,404 B1

155

In one example, two test scenario templates may be con-
sidered similar if they involve similar elements. For example,
the two templates contain similar elements such as similar
code (e.g., they share a certain portion of code, but other
portions are different), similar screens (e.g., screens that have
some of the same fields), and/or involve execution of at least
some of the same transactions. Optionally, similarity of two
templates is computed by comparing elements in each tem-
plate. For example, similarity of two templates is computed
according to the number and/or portion of similar transac-
tions in each of the two templates. Optionally, if a number
and/or portion of elements that are similar in two templates
reaches a predetermined threshold, the two templates are
considered similar, otherwise, they are not considered simi-
lar.

In another example, two templates that are generated from
one or more same runs of test scenarios are considered simi-
lar. Optionally, two templates that are generated from one or
more runs from a same cluster of similar runs are considered
similar. Optionally, two templates that instantiate test sce-
narios that produce runs of test scenarios that are considered
similar, are considered similar templates.

In one example, templates are represented by vectors, and
determining similarity of templates may utilize similarity
functions that may be used with vectors (e.g., dot-product,
Pearson correlation). Optionally, if a similarity value returned
by a function computing similarity of two vectors that repre-
sent two templates reaches a predetermined threshold, the
two templates are considered similar; otherwise, the two tem-
plates are not considered similar.

The comparison of the profile 857 of the certain user and
the profiles 859 of the users profile may be done in various
ways. Optionally, the profiles may be represented in various
ways. For example, a vector representation may be used (e.g.,
representing which templates were utilized), or a profile may
contain a collection and/or listing of utilized templates.

In one embodiment, a comparison of profiles involves
identifying which templates in the profiles are identical and/
or similar. Optionally, if the number of identical and/or simi-
lar templates reaches a predetermined threshold, the profiles
may be considered identical and/or similar. Similarly, if the
portion of templates that are similar and/or identical reaches
a predetermined threshold the profiles may be considered
similar and/or identical. Optionally, the decision on whether
the profiles are similar or identical may be determined
according to the number and/or portion of templates that are
similar and/or identical. For example, if the number of tem-
plates that are identical in the profiles reaches a first prede-
termined threshold, the profiles are considered similar; how-
ever, if the number reaches a second predetermined threshold
that is higher than the first, the profiles may be considered
identical. Optionally, a degree of similarity between the pro-
files is determined based on the number and/or portion of
templates that are similar and/or identical in the profiles. For
example, the larger the number portion of similar templates in
the profiles, the more similar they are considered.

In another embodiment, the profiles 859 of the users and
the profile 857 of the certain user are converted to vectors. For
example, each profile may be converted to a binary vector
where each position in the vector corresponds to a different
template. A vector of a profile may have 1 in a certain position
that corresponds to a template if the profile indicates that the
user to whom the profile corresponds utilized the template;
otherwise, the vector may be O at the certain position. Given
a vector representation, the profile comparator 858 may uti-
lize various approaches to find profiles of users that are simi-
lar to the profile 857. In one example, the profile comparator

15

30

40

45

156

858 may perform pairwise comparisons and utilize a similar-
ity metric such as a dot-product or Pearson correlation. In
another example, the profile comparator 858 may utilize near-
est neighbor searching or locality-sensitive hashing to find a
vector representing a profile of a user that is similar to the
vector representing the profile 857.

In yet another embodiment, the profile comparator 858
compares the profile 857 of the certain user to the profiles 859
of the users by identifying pairs of similar and/or identical
templates in profiles being compared. For example, when
comparing the profile 857 to a profile of a user, the profile
comparator 858 may form pairs of similar templates by exam-
ining each template indicated as utilized in the profile 857 and
pairing it with a most similar template indicated as utilized in
the profile of the user that could be found. The similarity of
the profile 857 to the profile of the user may be determined
according to the pairs of similar templates that were found
and the corresponding similarity levels of the pairs. For
example, the similarity may be proportional to the number
and/or proportion of the pairs of similar templates that have a
corresponding similarity that exceeds a predetermined
threshold.

The template selector 860 is configured to select a certain
template 862 that is appropriate for the certain user. The
certain template 862 is selected from among candidate tem-
plates which are templates indicated as utilized in the at least
one profile of a user identified by the profile comparator 858
as being similar to the profile 857 of the certain user. Option-
ally, at least some of the candidate templates were generated
from runs of test scenarios run by the users belonging to the
different organizations. In one example, the runs of test sce-
narios of the users were clustered into clusters of similar runs.
In this example, at least some of the candidate templates were
generated from runs belonging to the clusters and/or may
represent the clusters. Optionally, the profile 857 does not
include an indication that the certain user utilized the certain
template 862; thus, the certain template 862 may be a new
template to the certain user. Optionally, the certain template
862 is utilized by at least two different users belonging to two
different organizations of the different organizations.

There are various approaches that may be utilized by the
template selector 860 to select the certain template 862 from
among the candidate templates. Optionally, the template
selector may take into consideration factors such as degree of
utilization of the candidate templates by the users and/or the
different organizations. Additionally or alternatively, the tem-
plate selector 860 may take into account similarity of the
candidate templates to templates utilized by the certain user.

In one embodiment, selecting the certain template 862,
from among templates that are indicated as utilized in the at
least one profile (i.e., the candidate templates), is based on the
number of different users that utilized the templates. For
example, the certain template 862 may be one of the candidate
templates that was utilized by a large number of users (from
among all the users with profiles). In this example, utilization
of a template by a large number of users may indicate a
general popularity of the template, and thus it may also be
useful for the certain user. In another example, the certain
template 862 may be one of the candidate templates that was
utilized by a large number of users with similar profiles to the
profile 857 of the certain user. In this example, utilization of
a template by a large number of users with similar profiles to
the profile 857 may indicate that the template is popular with
users that are similar to the certain user and is thus likely to be
more suitable for the certain user than another template that is
only utilized by a small number of users that are similar to the
certain user. Optionally, a large number of users is a number

US 9,317,404 B1

157

of'users that places the template in the upper half of templates
when ranking them according to the number of users that
utilized them. Alternatively, a large number of users is a
number of users that may place the template in the top of a list
of templates ranked according to the number of users that
utilized them.

In another embodiment, selecting the certain template 862,
from among the candidate templates is based on the number
of different organizations with users that utilized the tem-
plates. For example, the certain template 862 may be one of
the candidate templates that was utilized by users coming
from the largest number of different organizations. In this
example, utilization of a template by users coming from a
large number of organizations indicates a general popularity
of the template across organizations; thus, the template may
be more likely to be useful for the certain organization to
which the certain user belongs. In another example, the cer-
tain template 862 may be one of the candidate templates that
was utilized by users with similar profiles to the profile 857,
which come from a large number of organizations. In this
example, utilization of a template by users with similar pro-
files from a large number of organizations may indicate that
the template is popular with organizations that may be similar
to the certain organization (since they all have users that
belong to them that have similar profiles); thus, the template
is likely to be more suitable for the certain user (and the
certain organization) than another template that is only uti-
lized by users with similar profiles to the profile 857, that
belong to a small number of organizations. Optionally, a large
number of organizations is a number of organizations that
places the template in the upper half of templates when rank-
ing them according to the number of organizations that have
users belong to them that utilized the templates. Alternatively,
a large number of organizations is a number of organizations
that may place the template in the top of a list of templates
ranked according to the number of organizations that have
users that utilized the templates.

In yet another embodiment, selecting the certain template
862, from among the candidate templates is based on simi-
larity of the candidate templates to templates utilized by the
certain user. In one example, the template selector 860 may
select the certain template 862 to be a candidate template that
has a high similarity to other templates already utilized by the
certain user. This may be done in order to suggest to the
certain user templates cover additional aspects, or slight
variations, of elements that have already been tested by the
certain user; this may enable more complete coverage of the
elements. In another example, the template selector 860 may
select the certain template 862 to be a candidate template that
has a low similarity to other templates already utilized by the
certain user. This may be done in order to suggest to the
certain user templates cover new elements that have not been
tested by the certain user; however, since these elements were
tested by other users with similar profiles, it may be likely that
the certain user should also test those elements.

In one embodiment, the comparisons of the profile 857 of
the certain user to the profiles of the users are performed by a
collaborative filtering algorithm which is utilized by the pro-
file comparator 858. Alternatively or additionally, selection of
the certain template is performed by a collaborative filtering
algorithm which is utilized by the template selector 860.
Alternatively or additionally, the profile comparator 858 and/
or the template selector 860 may be modules utilized by a
collaborative filtering algorithm to perform its task. For
example, the collaborative filtering algorithm may utilize the
profile comparator to identify one or more profiles of users
that are similar to the profile 857. The collaborative filtering

10

15

20

25

30

35

40

45

50

55

60

65

158

algorithm may also utilize the template selector 860 to select
the certain template 862. Optionally, both the profile com-
parator 858 and the template selector 860 are realized by the
same module, that is capable of both identifying the similar
profiles and selecting the certain template 862.

In one embodiment, the computer system optionally
includes a customization module 868 that is configured to
customize the test scenario template for the certain user by
adding to the test scenario template proprietary data relevant
to the certain user.

In one embodiment, the computer system optionally
includes a user interface 870 that is configured to suggest to
the certain user to run an instantiation of the certain template
862. Additionally or alternatively, the user interface 870 may
be configured to indicate that no template is selected for the
certain user if at least one of the following occurs: no profile
from among the profiles of the users is identified as similar to
the profile of the certain user, and no template is identified
which is both appropriate for the certain user and the profile of
the certain user does not comprise an indication that the
template was utilized by the certain user.

In one embodiment, the computer system optionally
includes a data cleaner 866 configured to remove proprietary
data from the certain template 862.

In one embodiment, the computer system optionally
includes a test identifier 852 configured to receive data
obtained from monitoring the certain user 850 running test
scenarios on a software system that belongs to certain orga-
nization and to identify the runs of test scenarios from the
data. Optionally, the test identifier 852 is also configured to
identify runs of test scenarios run by the users on software
systems that belong to the different organizations.

In one embodiment, the computer system may optionally
include a monitoring module 851 configured to monitor the
certain user 850 running the test scenarios on the software
system that belongs to the certain organization. Optionally,
the monitoring module 851 is also configured to monitor the
users belonging to the different organizations, running the
test scenarios on the software systems that belong to the
different organizations. Optionally, the monitoring module
851 is also configured to provide data obtained from the
monitoring to the test identifier 852.

Itis to be noted that different embodiments may implement
components of the computer system illustrated in FIG. 58
and/or FIG. 59 in different ways. For example, in some
embodiments one or more of the following may be imple-
mented by the same software module and/or software mod-
ules running on the same processor: the monitoring module
851, the test identifier 852, the template identifier 854, the
profile generator 856, the profile comparator 858, the tem-
plate selector 860, the data cleaner 866, the customization
module 868, and the user interface 870 Additionally, one or
more of the aforementioned components may be imple-
mented on a remote server, such as a cloud-based server.
Optionally, one or more of the aforementioned modules may
be part of a service which receives the runs 853 of test sce-
narios of the certain user, and suggest to the user a certain
template 862 that may be useful for the user based on the
profiles 859 of the users.

In one embodiment, the test identifier 852 and the template
identifier 854 are realized by a same software module that
both identifies the runs 853 and identifies the templates from
which the runs 853 were instantiated. In another embodiment,
the template identifier 854 and the profile generator 856, are
both implemented, at least in part by a same software module
that both identifies templates from which the runs 853 were
instantiated, and generates the profile 857 of the certain user.

US 9,317,404 B1

159

FIG. 60 illustrates one embodiment of a computer imple-
mented method for selecting a test scenario template for a
certain user based on similarity of a profile of template utili-
zation by the certain user to profiles of template utilization by
other users. The illustrated embodiment includes the follow-
ing steps:

Instep 884, receiving runs of test scenarios, run by a certain
user belonging to a certain organization on a software system
belonging to the certain organization.

In step 886, identifying, from the runs, test scenario tem-
plates utilized by the certain user. Optionally, a template may
be considered utilized by a user if the user runs an instantia-
tion of the template.

In step 888, generating a profile of the certain user based on
the test scenario templates. The profile indicates test scenario
templates utilized by the certain user.

In step 890, receiving profiles of users belonging to difter-
ent organizations. The certain organization is not one of the
different organizations, and the profiles indicate test scenario
templates utilized by the users belonging to the different
organizations.

In step 892, comparing between the profile of the certain
user and the profiles of the users and identifying at least one
profile of a user, from among the profiles of the users, which
is similar to the profile of the certain user.

In step 894, following the “Yes” branch from step 892,
selecting a certain template from among templates indicated
as utilized in the at least one profile. Optionally, the profile of
the certain user does not include an indication that the certain
user utilized the certain template. Optionally, the certain tem-
plate is utilized by at least two different users belonging to
two different organizations of the different organizations.

In one embodiment, the computer implemented method
may include optional step 896 which involves suggesting to
the certain user to run an instantiation of the certain test
scenario template.

In one embodiment, selecting the certain template, from
among templates that are indicated as utilized in the at least
one profile, may be based on the number of different users that
utilized the templates. For example, the certain template may
be a template utilized by the largest number of users. Addi-
tionally or alternatively, selecting the certain template, from
among templates that are indicated as utilized in the at least
one profile, may be based on the number of different organi-
zations with users that utilized the templates. For example,
the certain template may be a template utilized by the users
belonging to the largest number of organizations.

In some embodiments, the computer implemented method
may include optional step 898, which follows the “No”
branch from step 892, and involves indicating that no tem-
plate is selected for the certain user if at least one of the
following occurs: no profile from among the profiles of the
users is identified as similar to the profile of the certain user,
and no template is identified which is both appropriate for the
certain user and the profile of the certain user does not com-
prise an indication that the template was utilized by the cer-
tain user.

In one embodiment, the computer implemented method
includes optional step 880 which involves monitoring the
certain user running the test scenarios on the software system
that belongs to the certain organization. Additionally or alter-
natively, the computer implemented method may include
optional step 882 which involves identifying the runs of test
scenarios run by the certain user on a software system that
belongs to the certain organization from data obtained from
monitoring the certain user. Optionally, the runs are identified
from data obtained by the monitoring.

20

25

40

45

55

160

In one embodiment, the computer implemented method
illustrated in FIG. 60 includes an optional step of customizing
the certain template for the certain user by adding to the
certain template proprietary data relevant to the certain user.

In one embodiment, a non-transitory computer-readable
medium stores program code that may be used by a computer
to select a test scenario template for a certain user based on
similarity of a profile of template utilization by the certain
user to profiles of template utilization by other users. The
computer includes a processor, and the non-transitory com-
puter-readable medium stores the following program code:

Program code for receiving runs of test scenarios, run by a
certain user belonging to a certain organization on a software
system belonging to the certain organization.

Program code for identifying, from the runs, test scenario
templates utilized by the certain user. Optionally, a template
may be considered utilized by a user if the user runs an
instantiation of the template.

Program code for generating a profile of the certain user
based on the test scenario templates. The profile indicates test
scenario templates utilized by the certain user.

Program code for receiving and profiles of users belonging
to different organizations. The certain organization is not one
of the different organizations, and the profiles indicate test
scenario templates utilized by the users belonging to the
different organizations.

Program code for comparing between the profile of the
certain user and the profiles of the users and identifying at
least one profile of a user, from among the profiles of the
users, which is similar to the profile of the certain user.

And program code for selecting a certain template, from
among templates indicated as utilized in the at least one
profile, which is appropriate for the certain user. The profile of
the certain user does not comprise indication that the certain
user utilized the certain template. Optionally, the certain tem-
plate is utilized by at least two different users belonging to
two different organizations of the different organizations.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for selecting the
certain template, from among templates that are indicated as
utilized in the at least one profile, based on number of differ-
ent users that utilized the templates.

In another embodiment, the non-transitory computer-read-
able medium optionally stores program code for selecting the
certain template, from among templates that are indicated as
utilized in the at least one profile, based on number of differ-
ent organizations with users that utilized the templates.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for customizing the
certain template for the certain user by adding to the certain
template proprietary data relevant to the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for suggesting to the
certain user to run an instantiation of the certain test scenario
template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for removing propri-
etary data from the certain template.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for identifying the
runs of test scenarios run by the certain user on a software
system that belongs to the certain organization from data
obtained from monitoring the certain user.

In one embodiment, the non-transitory computer-readable
medium optionally stores program code for monitoring the
certain user running the test scenarios on the software system
that belongs to the certain organization. Optionally, the same

US 9,317,404 B1

161

module of program code performs both the monitoring and
the identifying of the runs of test scenarios run by the certain
user.

Monitoring Users and Identifying Runs

Some of the disclosed embodiments involve software sys-
tems that may be characterized as being data-oriented large-
scale software systems. Examples of data-oriented large-
scale software systems include Enterprise Resource Planning
(ERP), such as from the following trademarks: SAP, Oracle
Application, The Sage Group, Microsoft Dynamics, and SSA
Global Technologies; billing systems (also known as revenue
management) such as from the following trademarks:
Amdocs, Comverse Inc., and Convergys Corporation; service
management systems; and portfolio management systems.
Installing, upgrading, and/or maintaining such systems
require running many tests in order to validate the systems’
behavior.

In this disclosure, users are often referred to as being moni-
tored. This monitoring typically concerns activity of the user
on a software system being tested. A monitored user may be
a human (e.g., performing a certain test) and/or a system
module (e.g., a module initiating the running of a certain
procedure).

In one embodiment, a test scenario refers to a functional
and/or a technical specification for testing a business process
and/or one or more transactions. A test scenario may specify
how to test one or more business processes, business require-
ments, test conditions, logical data, and/or expected results of
tests.

In one embodiment, runs of test scenarios are identified
and/or obtained based on data collected from monitoring
users. For example, monitoring of a user may involve collec-
tion of data related to inputs provided by a user to a system,
along with the transactions that were run, and results of the
transactions. This data may be used to identify runs of test
scenarios that describe test steps taken by a user and a result
of executing the test steps on the software system.

In another embodiment, monitoring a user is done in order
to obtain activity data of a user on a software system. The
activity data may include data related to inputs provided by
the user and/or other sources to the software system, outputs
generated by the software system, and/or intermediate values
generated by the software system (e.g., temporary files gen-
erated by the system, network traffic of the system, and/or
content of memory belonging to the system). Optionally, the
activity data may be utilized in order to identify runs of test
scenarios.

In some embodiments, users perform at least part of their
interaction with a software system via a user interface that
includes a display that displays screens. Optionally, a screen
may refer to a presentation of a certain form through which a
user may access, modify and/or enter data. Optionally, a
screen includes one or more fields. Optionally, a field may
have a certain name and/or identifier. Optionally, a field may
have an associated value, which may be referred to herein as
a “field value”. The field value may or may not be presented
on the screen. Optionally, the user is able to edit certain field
values, while other field values may not be editable by the
user. Optionally, certain field values may be required values,
which the user must enter before completing a screen.
Optionally, field values from a screen may correspond to one
or more database entries. For example, a screen displaying
customer details (e.g., name, address, telephone number)
may correspond to a record of the customer in a customer
database.

In one embodiment, monitoring users involves monitoring
certain transactions and/or business processes that were

10

15

20

25

30

35

40

45

50

55

60

65

162

executed by the users, as part of running test scenarios.
Optionally, monitoring users may involve monitoring which
programs executed by the users, along with invocation values
of the users and/or return values of the programs.

In one embodiment, monitoring a user may involve record-
ing and/or processing inputs the user provides to the software
system (e.g., via a keyboard, mouse click, visual cue). Addi-
tionally or alternatively, the inputs may include digital data
transmitted to the system (e.g., a file of digital data). In
another example, monitoring a user may involve recording
and/or processing outputs generated by the software system.
Such outputs may include, values presented on a screen,
written in a file, printed, and/or provided in the form of
auditory cues. The outputs may be presented to the user
and/or provided to other recipients. In yet another example,
monitoring a user may involve utilization of internal state data
of the software system; data that may not have been directly
provided by the user and may also not be directly provided to
the user (e.g., memory content, database activities, and/or
network traffic).

Insome embodiments, users performing tests may be given
instructions and/or scripts describing some of the steps
involved in a certain test (e.g., which procedures to run, what
buttons to push, and/or what values to provide the system).
Optionally, such instructions and/or scripts may be given in
electronic form (e.g., a computer file or instructions on a
screen) and may be recorded and/or processed as part of
monitoring a user.

As described in some embodiments in this disclosure,
monitoring a user running test scenarios on a software system
may be performed by a monitoring module. Optionally, the
monitoring module is, and/or utilizes, a software module that
interacts with the software system on which the test scenarios
are run, in order to obtain data related to activity of the user on
the software system. Optionally, the monitoring module is
implemented, at least in part, as part of the software system.
For example, the monitoring module may include one or
more programs that are part of a distribution of the software
system. Additionally or alternatively, the monitoring module
may be implemented, at least in part, separately from the
software system. For example, the monitoring module may
include programs that are not part of the software system
(e.g., notincluded in a distribution of the software system). In
another example, the monitoring module may include pro-
grams that run on hardware that does not run the programs
belonging to the software system; e.g., the monitoring mod-
ule may run programs on different servers than servers on
which the software system runs programs. Optionally, the
monitoring module is implemented, at least in part, on hard-
ware remote from hardware that runs the software system. For
example, a software system may run on hardware located at a
certain organization, while the monitoring module may run,
at least in part, on remote cloud-based servers that are not
associated with the certain organization.

In some embodiments, the monitoring module may receive
data from the software system that is intended for the moni-
toring module (e.g., the software system may explicitly send
the monitoring module data describing activity on the soft-
ware system). Additionally or alternatively, the monitoring
module may intercept and/or examine data of the software
system that is not intended primarily for the monitoring mod-
ule. For example, the monitoring module may sniff network
traffic that involves message exchange between modules of
the software system as part of the normal operation of the
software system.

In some embodiments, a run of a test scenario may include
identifiers of business processes, transactions, and/or system

US 9,317,404 B1

163

commands that were executed while running the test sce-
nario. Additionally or alternatively, a run of a test scenario
may include values that were provided to a software system
(e.g., input values in a screen), values generated by the soft-
ware system (e.g., outputs from a transaction), and/or internal
values of the software system (e.g., intermediate values gen-
erated by a transaction). Additionally or alternatively, a run of
a test scenario may include state information about systems
involved in running the test scenario (e.g., the state of certain
system resources, and/or performance data such as CPU load
or network congestion), and/or information about a user run-
ning the test scenario (e.g., organization affiliation, depart-
ment, job title, permissions). Optionally, a certain test step,
transaction, command or procedure is said to be described
and/or included in a run of a test scenario if the run of the test
scenario indicates that the certain test step, transaction, com-
mand, or procedure was executed as part of running the test
scenario. Optionally, examining the run of the test scenario
may reveal a value associated with the certain test step, trans-
action, command, or procedure. Additionally, examining the
run of the test scenario may reveal a behavior of the system
with respect to the certain test step, transaction, command, or
procedure. For example, a run of a test scenario may indicate
whether or not a certain transaction, involved in the running of
the test scenario, produced an error message.

In one embodiment, identifying a run of a test scenario
from data obtained from monitoring one or more users is done
as part of the process of monitoring the users. For example, a
user may be monitored for a session, which is a certain period
of time that corresponds to running of a certain test scenario.
Each session may start when the running of the certain test
scenario starts (e.g., when a first screen is presented to a user),
and may end when the running ends (e.g., after the user enters
a last value involved in the test scenario). Thus, any data
recorded during the session may be easily identified as
belonging to a run of the certain test scenario.

In one embodiment, the action of monitoring a user and the
action of identifying a run of a test scenario from data
obtained from the monitoring are performed separately. For
example, monitoring may generate bulk data corresponding
to activity of one or more users. Identitying runs in the bulk
data may require parsing the data to identify certain portions
of interest, such as transactions executed by each of the users
and/or inputs and outputs of each of the users. In one example,
identifying runs involves detecting in the data obtained from
monitoring signals that denote a start and/or end of a run.
Optionally, the signals may be explicit, such as explicit tags in
the data that denote a start of running a test and/or end of
running a test scenario. Alternatively or additionally, the sig-
nals may be implicit. For example, a user entering data after
not doing so for a while may signal a start of a run; while
having a user stop entering data, and not entering further data
for a prolonged period may signal an end of a run. In another
example, the fact that a user performs a certain transaction
may signal a start of a run, such as entering data in a screen
labeled “begin new client record”. Similarly, certain transac-
tions may signal an end of a run, such as entering data in a
screen labeled “finalize new client”. In yet another example,
identifying a run of a test scenario may involve selecting
certain types of data and/or amounts of data that are to be
included in the run. For example, while monitoring a user
may involve collection of various types of data, in a certain
system, runs of test scenarios may include only descriptions
of screens presented to a user while interacting with the
certain system. Thus, in this example, identifying runs may
involve identifying and retaining descriptions of screens.

25

35

40

45

164

The process of identifying runs of test scenarios ofa certain
user may utilize, in some embodiments, data collected from
other users. For example, determining boundaries of a test
scenario, such as determining at what screen a run of the test
scenario typically starts, and at what screen it ends, may be
based on examination of data obtained from multiple users. In
the examination of the data, certain common screens that
appear in data from multiple users may be detected, and runs
of'test scenarios may be restricted to begin and/or end with a
description of at least one of the common screens. Alterna-
tively or additionally, identitying runs of test scenario run by
a certain user, may involve examination of data obtained
primarily from monitoring the certain user.

As described in some embodiments in this disclosure, iden-
tifying runs of test scenarios run by users on software systems
may be performed by a test identifier. In some embodiments,
the test identifier receives data from the monitoring module.
Optionally, the test identifier and monitoring module are real-
ized by the same software module and/or same hardware. In
one example, one program may perform at least some of the
operations involved in monitoring the users and identifying
the runs. In another example, programs that perform at least
some of the operations involved in monitoring the users and
identifying the runs of test scenarios, run on the same servers.

In one embodiment, the monitoring module runs, at least in
part, on hardware that is different from hardware on which at
least some of the actions of the test identifier are performed.
For example, a monitoring module that monitors users
belonging to a certain organization may run, at least in part,
on servers belonging to the certain organization. However, a
test identifier, which receives data from the monitoring mod-
ule, may run on remote servers belonging to, or controlled by,
a different organization, such as an organization that provides
analysis services to the certain organization.

Crowd Testing Data

Some aspects of this disclosure involve utilization of runs
of'test scenarios run by users belonging to, or associated with,
different organizations. Optionally, a group of users running
test scenarios may be referred to as a “crowd” or “crowd
users”. Optionally, crowd users do not run test scenarios in a
coordinated effort, such as users belonging to different orga-
nizations that do cooperate to run test scenarios to test a
certain software system that belongs to a certain organization,
or users making a coordinated effort to test certain aspects of
their software systems. Rather, as typically used in this dis-
closure, the users belonging to the different organizations run
test scenarios to test software systems of their respective
organizations, and do so essentially independently of each
other.

In some embodiments, a first organization and second
organization are considered different organizations if the first
organization has a different ownership structure (e.g., a dif-
ferent composition of shareholders) than the second organi-
zation. Additionally or alternatively, two organizations may
be considered different organizations if they have different
employees, and/or different members of management.

In one embodiment, a user may be considered to belong to
an organization and/or may be considered to be associated
with the organization, if the user has a certain relationship
with the organization such as being an employee of the orga-
nization, a member of the organization, and/or contracted to
work for the organization. Additionally or alternatively, a user
may belong to an organization, and/or be associated with the
organization, if the worker performs work that is directly or
indirectly done on behalf of the organization. For example, an
employee of a first organization may be considered associated
with a second organization if the employee runs, as part ofher

US 9,317,404 B1

165

duties, tests that involve a system of the second organization.
As used herein, the terms “associated” and “belongs” may be
used interchangeably when referring to a user being associ-
ated with an organization or a user belonging to an organiza-
tion.

Some aspects of this disclosure involve utilization of runs
of'test scenarios run on software systems belonging to difter-
ent organizations and/or associated with the different organi-
zation. Optionally, a software system may be considered to
belong to a certain organization and/or may be considered to
be associated with a certain organization if the software sys-
tem runs, at least in part, on hardware belonging to the orga-
nization and/or paid for by the organization (e.g., software
running on cloud-based servers billed to the organization).
Additionally or alternatively, a software system may be con-
sidered to belong to an organization and/or be associated with
the organization if a user from the organization runs test
scenarios, which run at least in part, on the software system.
As used herein, the terms “associated” and “belongs” may be
used interchangeably when referring to a software system
being associated with an organization or a software system
belonging to an organization.

Some embodiments in this disclosure involve monitoring
multiple users belonging to different organizations. In some
embodiments, each user belongs to a single organization. For
example, 100 different users may belong to 30 difterent orga-
nizations; some organizations may have a single user that
belongs to them, while other organizations have multiple
users that belong to them. In some embodiments, users may
belong to more than one organization. For example, 100
different users may belong to 150 different organizations; in
this example, some of the users belong to more than one
different organization.

In the embodiments, some of the systems on which test
scenarios are run may be data-oriented large-scale software
systems. Optionally, the software systems are packaged
applications having multiple modules. Optionally the soft-
ware systems may be considered similar to each other if the
software systems use in a similar manner one or more mod-
ules of the same type (possibly having different versions).
Additionally or alternatively, the software systems may be
considered similar if they contain one or more modules with
a similar function (e.g., modules that manage sales, stocking,
or human resources).

In some embodiments, analyzing runs of test scenarios
obtained from monitoring running of test scenarios by a
crowd of users, on software systems of multiple organiza-
tions, may help gain certain insights that may not be easily
attained from analysis obtained from runs associated with a
single organization. For example, runs of test scenarios
obtained from monitoring a crowd may help gain insight into
the general applicability of certain test scenarios and/or test
steps for testing certain components of the systems, such as
modules, business process, and/or transactions. Based on the
fact that multiple organizations run test scenarios to test cer-
tain components, it may be postulated that a different orga-
nization should also run similar test scenarios; this may be
especially true if the different organization is in the same field
of operations as the multiple organizations.

In some embodiments, analyzing runs of test scenarios
obtained from monitoring running of test scenarios on sys-
tems of multiple organizations may also help gain insight into
the commonality of certain aspects of the systems, as indi-
cated by their reoccurrence in the runs. Such insight may be
used, in some embodiments, to deduce whether a certain
aspect is particular to a single organization, or a small number
of organizations from the multiple organizations. Alterna-

10

15

20

25

30

35

40

45

50

55

60

65

166

tively, it may be deduced, the certain aspect may be rather
general and may be associated with a relatively large portion
of the multiple organizations. For example, runs of test sce-
narios associated with multiple organizations may include a
field which is given a value in each run of the test scenarios.
If a certain value is entered in a large proportion of the runs
(the same certain value is entered in each run of the large
proportion or runs), then the value may be considered a
default value or a general value. In this case, knowing the
certain value may not assist much to identify a specific orga-
nization which is associated with a run from which the certain
value was taken. However, if a certain value appears only in
runs of a single organization, or in a small proportion of the
runs, then the value may be considered a unique and/or pro-
prietary value. In this case, knowing the certain value may
assist to identify a specific organization which is associated
with a run from which the certain value was taken. Thus, in
some embodiments, monitoring runs of test scenarios asso-
ciated with multiple organizations may help discover non
organization-specific default values that can be used for run-
ning test scenarios of other organizations. Additionally, the
same analysis may help identify what data in the runs may be
considered proprietary.

Configuration Elements and Changes

In one embodiment, the software systems may include
many modules that can be configured to suit an organization’s
needs. Configuring a system may involve various aspects of a
software system, modules belonging to the software system,
and/or business processes run on the software system.
Optionally, in some embodiments, configuring a system is
done, at least in part, using configuration files, setup file,
and/or customization code that are read by the system and
may be altered by an organization to suit the organization’s
needs. In one example, configuring a SAP ERP system
involves entering, editing, and/or removing values from con-
figuration tables. Optionally, the tables may define various
aspects of fields (e.g., name and type) for certain data tables
users may access via the ERP system. In another example, an
Oracle™ database system is configured using Oracle form
personalization, which is a standard feature provided by
Oracle™ and supported by Oracle™ to customize the forms.
Forms personalization enables changing properties of fields,
such as hiding fields, making fields mandatory, creating zoom
functionality, and/or dynamic changes of lists of values. In
one embodiment, customizations refer to user-generated
code, such as “user exit” in SAP, and customization code in
Oracle.

In some embodiments, a configuration element is one or
more details (e.g., a line in a configuration file, a field name,
a function name), which can be used to configure behavior of
a software system. In one example, a configuration element
may define certain aspects of data structures used by the
system (e.g., column names in a table) and/or type of values in
a column belonging to a table. In another example, a configu-
ration element may determine behavior of a system, such as
defining what functions should be called under certain con-
ditions (e.g., what to do with a printing job).

In one embodiment, a change to a configuration element
may be referred to as a “configuration change”. Optionally, a
configuration change may include one or more actions that
involve adding a configuration element, deleting a configu-
ration element, and/or editing a configuration element.
Optionally, a configuration change may require running one
or more test scenarios in order to verity that the configuration
change caused a desired effect and/or in order to verify that
the configuration change did not cause an undesired effect.

US 9,317,404 B1

167

In one embodiment, a configuration element may have an
associated value. For example, a configuration element called
“default field width” may have an associated value 20.
Optionally, a change to an associated value of a configuration
element may be referred to as a “configuration change”.
Optionally, a configuration change may involve adding an
associated value to a configuration element, deleting an asso-
ciated value from a configuration element, and/or editing an
associated value of a configuration element.

In some embodiments, there may be various ways in which
configuration elements and/or configuration changes may be
identified. Identifying a configuration element enables a soft-
ware system and/or a user to determine what configuration
element is being referred to. Similarly, identifying a configu-
ration change enables the software system and/or a user to
determine what configuration element being changed and/or
what change is done to an associated value of the configura-
tion element.

In one example, a configuration change is identified by a
code, such as a hash code or an identification number. Option-
ally, the code also identifies an associated value of the con-
figuration element and/or a change to an associated value of
the configuration element. In another example, a configura-
tion change and/or a configuration element may be charac-
terized by a new configuration file (e.g., a new setup file for
the system). Optionally, a comparison between a new con-
figuration file and a previous configuration file may charac-
terize configuration changes, that involve changes to configu-
ration elements and/or associated values of configuration
elements.

In one embodiment, configuration elements and/or con-
figuration changes may be clustered into clusters of similar
configuration elements and/or configuration changes.
Optionally, clusters of similar configuration elements include
configuration elements that deal with the same, or similar,
system modules, business processes and/or database tables.
Optionally, clusters of similar configuration changes include
configuration changes that deal with the same, or similar,
configuration elements. Optionally, clusters of similar con-
figuration changes include configuration changes that are
associated with similar values.

In one embodiment, configuration elements and/or con-
figuration changes are clustered utilizing text clustering
approaches. For example, clustering is performed on configu-
ration files that include the configuration elements and/or
configuration changes. Those skilled in the art may identify
various text clustering algorithms that may be utilized to
cluster configuration elements into clusters of similar con-
figuration elements. Optionally, configuration elements and/
or configuration changes may be considered similar if con-
figuration files that include the configuration elements and/or
the configuration changes are considered similar (e.g., they
belong to a same cluster).

In another embodiment, clustering configuration elements
and/or configuration changes may be done based on values
associated with the configuration elements. Optionally, clus-
ters of similar configuration elements and/or configuration
changes may include same or similar configuration elements
and/or configuration changes, which have similar associated
values in several ways. In one example, portions of configu-
ration files that include multiple configuration elements and/
or configuration changes are converted to vector representa-
tion; each vector dimension corresponds to a certain
configuration element and the value entered in the vector
dimension corresponds to an associated value of the certain
configuration element. Those skilled in the art may recognize
various algorithmic approaches that may be utilized to cluster

30

40

45

168

vectors representing the portions of the configuration files
(e.g., k-means or hierarchical clustering).

Clustering Runs of Test Scenarios

In some embodiments, runs of test scenarios may be clus-
tered. Clustering the runs may involve assigning a run of a test
scenario to at most one cluster (e.g., “hard clustering” or
partitioning). Alternatively, the clustering may involve
assigning a run of a test scenario to one or more clusters. For
example, the clustering may be “soft clustering” in which a
run of a test scenario may belong to various clusters, possibly
with different probabilities or levels of association to each
cluster. Optionally, clusters of runs contain runs that are simi-
lar to each other.

In one embodiment, runs of test scenarios may be parti-
tioned into clusters based on one or more values from the runs
of'test scenarios. For example, runs that involve a same start
and/or end test step may be placed in the same cluster (e.g.,
runs that start from the same screen ID and end with an error
are placed in the same cluster). In another example, runs that
have a certain field (e.g., customer bank account number) are
placed in the same cluster.

Clusters of runs of test scenarios may have different char-
acteristics in different embodiments. In one embodiment, a
cluster of runs of test scenarios should be of a size that reaches
a predetermined threshold. Optionally, the predetermined
threshold is greater than one. For example, each cluster
should contain at least 3 runs. Optionally, the predetermined
threshold is proportional to the number of runs being clus-
tered. For example, each cluster may be required to contain at
least 0.1% of the runs of test scenarios being clustered.

Clusters of runs may also be constrained according to the
source of the runs belonging to the clusters. In one embodi-
ment, a cluster of runs of test scenarios must include runs of
at least a first predetermined number of different users and/or
of'users belonging to at least a second predetermined number
of organizations. Optionally, the first predetermined number
is greater than one and/or the second predetermined number
is greater than one. In one example, the first predetermined
number is 10, and the second predetermined number is 2;
thus, each cluster includes at least 10 runs, and not all those
runs are associated with the same organization. In another
example, the first predetermined number is 5, and the second
predetermined number is 5; thus, each cluster needs to con-
tain runs associated with at least 5 organizations.

In one embodiment, ensuring that clusters of runs have
certain characteristics, such as a certain size and/or include
runs of a certain source, is done by a clustering algorithm that
generates the clusters. For example, the clustering algorithm
may ensure that each cluster includes runs of test scenarios of
at least a predetermined number of users. Alternatively or
additionally, ensuring that clusters of runs have certain char-
acteristics may be done after clustering. For example, after
clusters are generated, they may be filtered to remove clusters
that have a size that is smaller than a predetermined threshold.

In one embodiment, clustering of runs of test scenarios
may involve procedures that rely on some runs being similar
based on a criterion of similarity. Optionally, a cluster of runs
may include similar runs. Optionally, by similar runs it is
meant that two runs are similar to each other according to the
criterion. Optionally, by similar runs it is meant that at least a
certain percentage of the runs belonging to a cluster are simi-
lar to each other according to the criterion. For example, a
cluster may be considered to include similar runs if 90% of
the pairs of runs in the cluster are similar according to the
criterion. Optionally, by similar runs it is meant that runs
belonging to the cluster are all similar to a representative of

US 9,317,404 B1

169

the cluster, such as one of the runs belonging to the cluster or
an average run of the cluster (e.g., a centroid of the cluster).

The criterion according to which similarity between runs
may be established, may have several forms. For example, the
criterion for similarity between runs may be that similar runs
include at least one of: essentially the same fields, similar
combinations of fields, similar execution of transactions,
similar user interactions, similar requests, similar test steps,
and/or similar calls to procedures. Optionally, similarity
between runs of test scenarios may be determined based on
properties of their respective test scenarios of which the runs
are instantiations; for example, by comparing the test steps
used in each test scenario.

In one example, various runs of essentially the same test
scenario (e.g., essentially the same testing script) are consid-
ered similar. In another example, runs of different test sce-
narios (e.g., using slightly different testing scripts), may be
considered similar if certain similarity criteria are met (e.g.,
similar fields types or names, similar field values, similar
screen content and/or layout, and/or similar return values in
the runs). In yet another example, runs of test scenarios are
considered similar, if'the test scenarios from which they were
instantiated are similar (e.g., involve similar screens, similar
fields, and/or similar field values).

In one example, at least part of the runs of test scenarios
involve software that runs on remote servers such as cloud-
based servers. Monitoring a user running a test scenario may
involve monitoring the content of the network traffic, such as
information exchanged between an input and/or output
device of the user and a cloud-based server. In this example,
runs of test scenarios may be considered similar if the net-
work traffic associated with them is similar (e.g., it follows a
similar exchange sequence, and/or content of the network
traffic is similar).

In one embodiment, clustering runs of test scenarios to
clusters that include similar runs may be based on counting
the number of similar fields used in corresponding screens
that are included in the test scenarios; the larger the number of
similar fields in the test scenarios, the more similar the runs of
the test scenarios are considered to be. Optionally, fields may
be considered similar if they include the same type of data.
Additionally or alternatively, fields that have the same values
are considered similar to each other. In one example, fields
that include both the same type of data and the same values are
considered more similar to each other than fields that have the
same type of data (but different values).

In one embodiment, a type of data of a field is determined
according to the context of the field in the screen. For
example, if a field is preceded on a screen by the words
“amount” or “sum due”, the field is considered to be numeri-
cal; while if the field is preceded on a screen by the words
“address” or “ship t0”, it is considered to be a string. Addi-
tionally or alternatively, the type of data of a field may be
determined according to the features of the data structure
representing the data. For example, if the field stores data in a
variable that holds integers or floating-point values, the type
of data is considered to be numerical. However, if the field
stores data in an array, or vector of characters, the data type is
considered to be a string. Additionally or alternatively, the
type of data of a field may be determined according to meta
data associated with a screen or database associated with the
field. For example, a description of a column, in a database
table which is to receive data from a field may be indicative of
the type of data. In another example, meta data tags (e.g.,
XML tags) associated with a screen may indicate the type of
data.

25

30

35

40

45

55

170

In another embodiment, clustering of runs of test scenarios
to clusters that include similar runs of test scenarios may be
based on similarity between orders of displaying similar
fields in corresponding screens. The closer the order of pre-
sentation of similar fields in test scenarios, the more similar
runs of the test scenarios are considered to be. In one example,
test scenarios are represented, at least in part, as a sequence of
field types, and/or fields IDs. The similarity between two runs
of test scenarios may be determined to be inversely propor-
tional to the number of editing steps that need to be taken to
transform one sequence of identifiers to another (“edit dis-
tance”); the lower the edit distance between representations
of'two runs, the more similar they are considered to be (and so
are their corresponding runs).

In yet another embodiment, clustering of runs of test sce-
narios to clusters that include similar runs may be based, at
least is part, on similarity between executed procedures that
are described in the runs. For example, the larger the overlap
in the corresponding sets of procedures performed by each
test scenario, the more similar runs of the test scenarios are
considered to be. Optionally, the clustering may be further
based on the order of the execution of the procedures; the
closer the order of execution of procedures in different test
scenarios, the more similar runs of the test scenarios are
considered to be. In cases in which test scenarios involve
execution of essentially the same procedures in essentially the
same order, the similarity between runs of the test scenarios
may be considered to be high.

In still another embodiment, the clustering of runs of test
scenarios to clusters that include similar runs of test scenarios
may be based on transactions described as executed in the
runs of the test scenarios. For example, test scenarios may be
characterized by the individual commands run by the system
as part of the test scenario. Runs of test scenarios in which
similar commands are executed may be considered similar for
the purpose of clustering. Optionally, a cluster of runs that
contains runs that have a certain proportion of common trans-
actions executed in all runs in the cluster is considered a
cluster of similar runs. For example, if at least 50% of the
transactions involved in each run in a cluster appear in all
other runs in the cluster, the cluster is considered to be a
cluster of similar runs.

Logged activities related to running test scenarios may also
be utilized for the purpose of clustering and/or determining
similarity between runs of test scenarios. For example, clus-
tering of runs of test scenarios to clusters that include similar
runs may be based on one or more of the following logged
activities: a list of users who ran the test scenarios, an analysis
of'access to a database, messages returned from the executed
transactions (e.g., valid, warning, or error messages), fields
which returned values in the transactions, and/or procedures
utilized by the test scenario (e.g., as identified by logs of run
time analysis). The clustering may be done according to there
being similarity, involving one or more of the aforementioned
logged activities, between test scenarios whose runs are
assigned to the same cluster. Optionally, logged activities
may be represented as feature values that may be put in a
vector corresponding to a run. For example, if a certain activ-
ity is performed during a run, a vector corresponding to the
run has 1 in a certain position, and otherwise there is a O in the
certain position.

Similarity of runs of test scenarios may be determined, in
some embodiments, according to the test scenarios and/or
templates from which the runs were instantiated. Optionally,
similarity of the test scenarios and/or templates may define
similarity of the runs that were instantiated from the test
scenarios and/or templates; thus, runs that were instantiated

US 9,317,404 B1

171

from similar test scenarios and/or templates are placed in the
same clusters (e.g., by the clustering module performing the
clustering of the runs). Alternatively, similarity of the test
scenarios and/or templates may be used as features that assist
in determining similarity of runs.

In one embodiment, runs that were instantiated from the
same test scenarios and/or the same templates may be con-
sidered similar. Optionally, two test scenarios and/or two
templates are considered the same ifthey involve execution of
the same test steps, screens, and/or transactions. In one
embodiment, two test steps are considered the same if they
perform the same exact task and include the same exact
associated data, while in another embodiment the two test
steps are considered the same if they perform the same task
but possibly involving different associated data. For example,
a first test step that involves entering a new product that is a
screwdriver (with details relevant to a screwdriver) may be
considered in the latter embodiment as being the same as a
second test step that involves entering a new product that is a
hammer (with details relevant to a hammer); however,
according to the former embodiment, the first and second test
steps may not be the same. Similarly, screens that include
field names and field values may be considered the same in
one embodiment if the field names and the field values are the
same; in another embodiment, the screens may be considered
the same if the field names are the same. The same logic may
also be applied to transactions; in some examples transactions
may be considered the same if they are completely identical,
while other transactions may be considered similar if they
include some of the same and/or similar elements (e.g., the
transactions involve similar screens).

In another embodiment, similarity of test scenarios and/or
templates is determined by comparing and/or counting simi-
lar elements in the test scenarios and/or templates. If the
number and/or proportion of the similar elements reaches a
predetermined threshold, then runs instantiated from the test
scenarios and/or templates may be considered similar and
placed by clustering in the same cluster of runs. For example,
if more than 50% of the screens included in two templates are
similar, then runs instantiated from the two templates may be
placed by clustering in the same cluster.

In yet another embodiment, test scenarios and/or templates
from which runs were instantiated may be utilized to generate
feature values, which are used to determine similarity of the
runs to each other. For example, a vector of features repre-
senting a run may include values extracted from a template
and/or test scenario from which the run was instantiated.

Clustering of runs of test scenarios to clusters of similar
runs may be based on data associated with the runs. Such data
may include data describing conditions under which a run
was executed. For example, the data may describe aspects of
the system (e.g., data involving modules, hardware, and/or
software versions). In another example, such data may pertain
to a test runner, such as the role (or assumed role) of the tester
in an organization, level of skill of the tester, and/or permis-
sions granted to the tester.

In some embodiments, clustering of runs of test scenarios
to clusters of similar runs is done, at least in part, according to
descriptions related to the systems on which the test scenarios
were run. For example, such descriptions may include con-
figuration elements (e.g., configuration files, customization
code and/or setup files). Additionally or alternatively, the
descriptions may include configuration changes (e.g., addi-
tion, deletion, and/or modifications) to the configuration ele-
ments. Thus, for example, runs of test scenarios concerning
modules with similar configuration files (e.g., the customiza-
tion files indicate similar default procedures and/or database

10

15

20

25

30

35

40

45

50

55

60

65

172

accesses) may be placed in the same cluster. In another
example, runs of test scenarios executed as a response to
similar configuration changes (e.g., as determined by the
original and/or changed values involved in the configuration
changes), may be placed in the same cluster based on their
similar configuration changes.

In some embodiments, runs of test scenarios may be rep-
resented as vectors of features that may be converted to
numerical values. For example, certain dimensions in the
feature vectors may correspond to the presence or absence of
certain fields, procedures, test steps, and/or transactions in a
test scenario (e.g., a value of ‘1 is given to a feature if a field
has a certain value in the test scenario, and ‘0’ otherwise.
Alternatively, a value of ‘1’ is given to a certain feature if a
certain procedure is called in the test scenario, and ‘0’ other-
wise). In another example, certain dimension in the feature
vectors contain values of a certain field from a run (e.g., time,
data, or price), or are derived from processing one or more
field values (e.g., averaging the delivery time from multiple
entries of individual delivery times entered in a screen). In yet
another example, certain values in a feature vector are
assigned numerical values according to categories to which
values from the runs belong. For example, a sale may be
categorized as “domestic” or “foreign”, and accordingly be
given a value of “1” or “2” in the feature vector.

Feature vector representations may be utilized in order to
compute a degree of similarity between feature vectors of
runs of test scenarios. For example, in cases where the feature
vectors contain numerical values (or can be converted to
numerical values), the distance similarity between vectors
representing test scenarios may be computed using one or
more of the following established distance metrics: Euclidean
distance of various norms, vector dot product, cosine of angle
between vectors, Manhattan distance, Mahalanobis distance,
Pearson correlation, and Kullback-Leibler divergence.

In one embodiment, a cluster of similar runs includes runs
that are represented by similar vectors. Optionally, similar
vectors may be characterized in various ways. In one
example, similar vectors are vectors whose average pairwise
similarity is above a predetermined threshold (e.g., the
threshold may be 0.5). Optionally, the average pairwise simi-
larity is determined by computing the average of the dot
product of each pair of vectors. In another example, similar
vectors are vectors that are all similar to a certain representa-
tive vector; e.g., the vectors all within a sphere of a certain
Euclidean distance from the representative.

Those skilled in the art may recognize that various cluster-
ing algorithms and/or approaches may be used to cluster runs
of test scenarios into clusters that include similar runs of test
scenarios. For example, the clustering may be done using
hierarchical clustering approaches (e.g., bottom-up or top-
down approaches) or using partition-based approached (e.g.,
k-mean algorithms). In addition, some of the test scenarios
may have assigned clusters while others may not. In such a
case, a semi-supervised clustering approach may be used
such as an Expectation-Maximization (EM) algorithm.

In one embodiment, the clustering of the runs of test sce-
narios to clusters that include similar runs may be done uti-
lizing a classifier that is trained to assign test scenarios to
predetermined classes. Optionally, the classifier is trained on
labeled training data that includes training data that includes
representations of runs of test scenarios (e.g., feature vectors)
and labels corresponding to clusters to which the runs are
assigned. I[fthe labels in the training data are assigned accord-
ing to some (possibly arbitrary) notion of similarity between
test scenarios, clusters of test scenarios that have the same

US 9,317,404 B1

173

label assigned by the classifier are likely to contain runs that
are similar according to the notion of similarity.

Optionally, runs of test scenarios are labeled according to
the module they involve (e.g., “sales”, “human resources”,
“manufacturing”), the type of activities involved in the sce-
nario (e.g., “accessing database”, “data entering”, “report
generating”), fields in the test scenario (e.g., “customer 1D”,
“part number”), properties of the test scenario (e.g., “fast”,
“many steps”, “expensive”, “includes private data”), and/or
results of a run of the test scenario (e.g., “ok”, “error”, “access
denied—permissions™). Optionally, labels may be con-
structed from multiple attributes. For example, a run of a test
scenario may be labeled as “involve sales, no private data,
access corporate database”.

Optionally, labels assigned to runs of test scenarios may be
generated and/or assigned manually (e.g., by a tester running
a test), and/or automatically, e.g., by a procedure that ana-
lyzes a test scenario to detect attributes describing it (e.g.,
what modules and/or procedures it involves).

Those skilled in the art may recognize that there are many
algorithms, and/or machine learning-based approaches, that
may be used to train a classifier of runs of test scenarios using
labeled training data. For example, some examples of the
algorithms that may be used include logistic regression, deci-
sion trees, support vector machines, and neural network clas-
sifiers.

In some embodiments, clusters of runs of test scenarios
may be assigned a cohesion rank that describes how close to
each other are runs belonging to the cluster. A cohesion rank
of'a cluster may describe various aspects related to the close-
ness of runs of test scenarios belonging to a cluster. In one
example, similarity of runs of test scenarios is related to the
fields included in the screens of the test scenarios; some of the
fields may be common to the screens involved in runs belong-
ing to the cluster, and some may not. The cohesion rank may
be proportional to the number of fields that are common in the
runs belonging to the cluster (e.g., they belong to at least 50%
of the runs in the cluster). The cohesion rank can be between
two runs of test scenarios or between groups of runs of test
scenarios. Optionally, the cohesion rank may be expressed via
cluster metrics such as average distance from the cluster
centroid or the ratio between the average radius of a cluster
(intra-cluster distance) and the average distance between
clusters (inter-cluster distance).

Clusters generated in the embodiments (e.g., clusters of
runs of similar test scenarios) may be filtered in various ways.
Optionally, the filtering may be done in order to reduce the
number of clusters that need to be considered and/or retain
clusters with a certain desirable property. Optionally, a test
scenario template generated from a filtered cluster and/or
representing a filtered cluster is not suggested to a user. Alter-
natively or additionally, a filtered cluster is not utilized for
generating a test scenario template and/or does not have a test
scenario template to represent it. Optionally, clusters are fil-
tered according to their size. For example, clusters of runs of
test scenarios that contain less than a predetermined number
of runs are filtered. Optionally, clusters are filtered according
to the number of their associations. For example, runs of test
scenarios in a cluster may be associated with certain organi-
zations (e.g., each run may be associated with an organiza-
tion). Clusters containing runs that are associated with too
few different organizations may be considered too homog-
enous and filtered.

Test Scenario Templates

A test scenario template may include various test steps that
need to be performed by a user in order to test certain aspects
of'a system being tested. Optionally, in some embodiments, a

10

15

20

25

30

35

40

45

50

55

60

65

174

test scenario template may be lacking one or more values that
need to be provided in order to run a test scenario based on the
test scenario template. In such a case, a user running a test
scenario based on the template may be required to enter the
one or more values that need to be provided, in order to
complete the template of the test scenario; alternatively, the
one or more values and be calculated and/or guessed. In one
example, a test scenario template may describe a test scenario
in which an order process is completed; the template may be
lacking a customer name and product ID, and in order to run
an instantiation of the template, a user may be required to
enter the lacking details. In another example, a template may
be of a test scenario in which rush shipping is performed; a
screen presented to the user may already have the rush ship-
ping box checked, but the user may still need to add details
such the client account number and shipping address.

In one embodiment, a template may include certain values
from which a user may be required to choose in order to run
a test scenario instantiated from the template. For example, a
template may have various values for a discount (e.g., 10%,
20%, or 50%); a user needs to choose from in order to com-
plete a transaction that is part of the template. Optionally, the
values the user may need to choose from are derived from one
or more runs of test scenarios that were used to generate the
template. For example, the aforementioned values of the dis-
count are the most popular values found to be used in runs of
test scenarios from which the template was generated.

In some embodiments, one or more runs of test scenarios
may be used in order to generate a test scenario template to
represent them. Optionally, the test scenario template is gen-
erated by a template generator module. In one example, the
runs of test scenarios may belong to a cluster. Optionally, the
test scenario template may identify, for its corresponding
cluster, one or more transactions used by test scenarios
belonging to the cluster. Additionally or alternatively, the test
scenario template may identify a way of using transactions
that are part of the test scenarios whose runs belong to the
cluster. For example, a template may define the order of
programs that are to be called, the type of actions that are to be
taken by a user (e.g., what fields to fill, what buttons to push),
and/or provide default values to at least some of the fields
(e.g., enter default values to some fields that appear on screens
that are part of test scenarios generated from the template).
Additionally or alternatively, a test scenario template may
identify one or more possible values that may be used to run
a transaction identified by the template.

It is to be noted that phrases such as “identifies a transac-
tion” involves any type of transaction identification, such as a
transaction identification number, a name of a transaction, a
description of a transaction, a screenshot of a transaction,
computer code of a transaction, and/or any other method that
enables a human and/or a computer to link between a possible
value and a transaction. Additionally, identifying a transac-
tion may involve noting a transaction identification. In one
example, noting a transaction identification involves storing
the transaction identification; for example, a template may
store transaction identification numbers that are to be
executed when running an instantiation of the template. In
another example, noting a transaction identification involves
providing the transaction identification. For example, upon a
query, scanning a template may generate and/or transmit
names of transactions that are stored in it.

Generating the template may involve utilizing information
from a plurality of runs of test scenarios. For example, one or
more test steps, commands, and/or values may be copied from
at least one of the plurality of runs of the test scenarios and
placed in the template. Additionally or alternatively, informa-

US 9,317,404 B1

175

tion contained in at least some of the plurality of runs may be
analyzed in order to determine certain test steps, commands,
and/or values are to be used in the template. Note that not all
information in the plurality of run of the test scenario needs to
be utilized to generate the test scenario template. For
example, a test scenario template may include a proper subset
of test steps included in certain runs. In another example,
certain runs, such as certain runs in a cluster, may be disre-
garded when generating a template based on other runs in the
same cluster.

In some embodiments, template generation may be based
on information obtained from one or more test scenarios.
Optionally, instantiations of the one or more test scenarios are
runs of test scenarios obtained and/or identified from activity
data of users. In one example, a test scenario may include a
script comprising test steps, and one or more test steps from
the script are included in the template. Note that the script
may be one various types of media; for example, a hard copy
document (e.g., paper), an electronic document (e.g., a
Microsoft Word™ or a PDF document), and/or a list of com-
puter commands (e.g., a script for an automatically run test
scenario). In another example, a test scenario may include
certain values that may be altered by a user running instan-
tiations of the test scenario (e.g., the certain values may be
default values). In this example, to generate the template it
may be desirable to utilize a certain value from a test scenario,
rather than a user-provided value from a run that is an instan-
tiation of the test scenario.

A test scenario template may be generated based on data
coming from several sources. In one embodiment, a template
is based on automatic test scenarios (e.g., scripts run auto-
matically by a program without any essential human inter-
vention). Additionally, the template may also be based on the
runs of the same test scenario. Thus, certain values in the
template may come from the test scenarios, while other val-
ues may come from the runs. In another example, a template
may be based on runs coming from different organizations.
The template may contain certain screens coming from a first
organization (e.g., as they appeared in runs associated with
the first organization), while other screens in the template
may come from runs associated with a second organization.

In one embodiment, a test scenario template is generated
from a first run of a test scenario run by a first user and a
second run of a test scenario run by a second user belonging
to a second organization. Optionally, the first and second runs
were obtained from monitoring of the first and second users,
respectively. Additionally, the first organization may be dif-
ferent from the second organization and the first useris not the
second user. The test scenario template generated from the
first and second run identifies a transaction used in the first
and second runs and one or more possible values for running
the transaction. Optionally, additional runs of test scenarios,
besides the first and second runs, are used to generate the test
scenario template.

In one embodiment, at least one of the possible values for
running a transaction in a template generated from first and
second runs may be derived from values obtained from the
first and/or second runs. Optionally, the at least one of the
possible values for running the transaction does not appear in
each of the first and second runs. For example, the at least one
of the possible values is an average of a first value from the
first run, and a second value form the second run, and the first
value does not equal the second value. Optionally, the test
scenario template includes a combination of the possible
values that may be used to run the test scenario template, and
the combination does not appear in any of the first and second
runs. For example, a combination of possible values involves

10

15

20

25

30

35

40

45

50

55

60

176

fields] and f,; the first run has values v, and u, for the fields
f, and £, respectively, and the second run has values v, and u,
for the fields f; and f,, respectively. In addition, v, does not
equal v, and u, does not equal u,. In this example, if the test
scenario template has a value v, for f; and u, for £, then it
contains a combination of possible values that does not
appear in any of the first and second runs.

In one embodiment, the first and second runs upon which a
template is based, may each be manual, semi-automatic, or
automatic runs of test scenarios. In one example, a test sce-
nario template is generated from a first run of a first test
scenario which is a manual test scenario and a second run of
a second test scenario which is an automatic test scenario. In
another example, a test scenario template is generated from a
first run of a first test scenario and a second run of a second test
scenario, and both the first and second runs are automatic.

In another embodiment, the first test scenario and second
test scenario are the same test scenario. Thus, the first run and
the second run are instantiations of the same test scenario. In
this case, despite being runs of the same test scenario, the first
and second runs may be different (e.g., due to diftferent inputs
provided by a user during their running). Alternatively, the
first test scenario and second test scenario may be different
test scenarios. Thus, the first run and the second run are runs
of different test scenarios; however, the first and second runs
may be similar due to similarities (despite being different)
between the first and second test scenarios and/or similarities
in inputs provided by the user while running the first and
second runs).

In one embodiment, generating a test scenario template
involves receiving multiple runs (e.g., runs belonging to a
cluster of similar runs), and selecting at least a first run and a
second run, from among the multiple runs, upon which the
template is to be based. Optionally, the first and second runs
are selected such that they belong are runs of different users
and/or runs of users belonging to different organizations.
Optionally, the first and second runs are runs that exhibit, on
average a high similarity to the multiple runs (e.g., they are
similar to a cluster centroid). Optionally, the first and second
runs are selected such that other of multiple runs have a
similarity to either the first run or the second run that reaches
a predetermined threshold. Optionally, the first and second
runs are selected according to a profile, such as a profile of a
certain user. Optionally, the profile indicates transactions and/
or values typically utilized by the certain user, and the first and
second runs that are selected involve transactions and/or val-
ues that appear in the profile.

In one embodiment, generating a test scenario template
from a cluster of runs of test scenarios involves identifying a
representative run of a test scenario for the cluster, and using
the representative run of a test scenario as basis for the at least
one template.

In one embodiment, generating a test scenario template
from a run of a test scenario may involve utilizing information
from the run of the test scenario. For example, one or more
test steps, commands, and/or values may be copied from the
run and placed in the template. Additionally or alternatively,
information contained in the run may be analyzed in order to
determine certain test steps, commands, and/or values are to
be used in the template. Note that not all information in the
run of the test scenario needs to be utilized to generate the test
scenario template. For example, the template may include a
proper subset of test steps included in the run of the test
scenario. Optionally, certain information in the run which
may be deemed proprietary is not utilized for the template.

US 9,317,404 B1

177

Additionally or alternatively, certain information in the run
which may be deemed proprietary is removed from the tem-
plate.

In another embodiment, generating a test scenario template
from runs of test scenarios (e.g., the runs belong to a cluster of
similar runs of test scenarios), may involve utilizing values of
a field, as they appear in runs, in order to set the value of the
field in the test scenario template.

In one embodiment, the value for the field in the test sce-
nario template is selected from the values of the field in the
runs of test scenarios in the cluster. For example, the value of
the field in the template is set according to the value of the
field in a randomly selected run of a test scenario from the
cluster.

In one embodiment, the value for the field in the test sce-
nario template is generated by a function with one or more
parameters that are set according to the values of the field in
the runs of test scenarios in the cluster. Optionally, the value
generated by the function is not a value found in any of the
runs belonging to the cluster. For example, in order to fill the
field “age” in the template, a distribution of the values of
“age” in runs in the cluster may be learned, and then the value
in the template may be set according to the expectation of the
learned distribution or randomly drawn according to the dis-
tribution. In this example, the resulting value of “age’ may not
be an actual value that appears in any of the runs belonging to
the cluster.

Test scenario templates may be suggested to a user so that
the user may run an instantiation of the templates on a system
to which the user belongs and/or is associated with. Option-
ally, a template may be generated from one or more runs of
test scenarios associated with various organizations to which
the user does not belong.

In some embodiments, a user is suggested to run a test
scenario template by presenting the user with a suggestion on
a user interface. For example, the user interface may be a
screen (e.g., monitor, image projected on a screen, and/or
augmented/virtual reality display). In another example, the
user interface may involve a speaker. Optionally, the user may
interact with a system via the user interface in various ways;
for example, touch (e.g., via a touch screen), typing (e.g., on
a physical and/or virtual keyboard), a hand-operated control
device (e.g., a mouse), and/or voice commands. Optionally,
the user is given an opportunity to modify via the user inter-
face, data related to the instantiation and presented on the user
interface; for example, the user may modify default values,
set according to the template, and presented on a screen that
is presenting while running an instantiation of the template.
Optionally, the user interface may initiate an instantiation of
a test scenario template; for example, the user interface may
present a first screen of the test scenario template and prompt
the user to take a certain action to advance execution of the
template.

In one embodiment, a user is recorded while running a
certain test scenario. If it is identified that the certain test
scenario is similar to a test scenario template (e.g., the certain
test scenario involves similar test steps, transactions, and/or
values as those involved in the template), it may be suggested
to the user to run an instantiation of the test scenario template.
Optionally, a suggestion to the user to run an instantiation of
the template is made via a user interface.

In another embodiment, a profile of a user is utilized to
suggest to the user to run a test scenario template appropriate
to the user based on information included in the profile. In one
example, the profile may include various information regard-
ing the user and/or an organization to which the user belongs,
such as information regarding modules, business processes,

10

15

20

25

30

35

40

45

50

55

60

65

178

and/or transaction utilized by the user and/or organization. In
another example, the profile may include runs of the user
and/or users belonging to a certain organization, and/or data
derived from the runs. In addition to the profile, and/or instead
of it, the suggestion of a template to the user may be done
according to other factors such as coverage of templates,
importance of templates, ranking of templates, and/or con-
nectivity factors of templates, as described in more detail
below.

Coverage

In order to validate that certain system elements operate
correctly after installation, customization, a change, and/or
an upgrade is done to the system—it is often the case that
many test scenarios need to be run. In order to validate the
system’s performance, it is desirable that the test scenarios
that are run should cover many elements that may be related
to, and/or affected by, the installation, customization, change,
and/or upgrade. For example, the elements may include vari-
ous transactions that may exhibit undesired behavior due to
the certain configuration change and/or upgrade; each
executed test scenario may be able to be used to test a subset
of'the transactions that are likely to be affected by the change,
and/or update, in order to determine if unwanted system
behavior occurs that involves one or more transactions.
Therefore, the coverage offered by a set of test scenarios (or
test scenario templates), such as which modules, business
processes, and/or transactions are evaluated by running a set
of test scenarios, becomes an important consideration when
selecting which test scenarios to run. Ideally, it would be
desirable to obtain as large coverage as possible with test
scenarios, however, often restrictions stemming from limited
resources for running test scenarios have also to be taken into
account.

In one embodiment, coverage refers to a percent of busi-
ness processes, used by an organization, that are sufficiently
tested by test scenarios in relation to the total number of
business processes used by an organization or a certain user.
For example, if 40% of the business processes run by users of
an organization are sufficiently tested by certain test sce-
narios, then the coverage of the certain test scenarios is 40%.
In some cases in order for a module, business process, and/or
transaction to be sufficiently tested, more than one aspect of
the module, business process, and/or organization needs to be
tested. This may involve running multiple tests in order to
cover the more than one aspect. For example, different com-
binations of input data for the same screen need to be pro-
vided in order to test various aspects of a certain business
process.

In one embodiment, a required coverage for a certain user
that runs test scenarios, is received and utilized for suggesting
test scenario templates for the user. For example, the required
coverage may list certain transactions that need to be evalu-
ated with test scenarios run by the user, and optionally the
number of test scenarios that need to be run to evaluate at least
some of the transactions. Alternatively or additionally, the
required coverage may indicate what percentage of a sys-
tem’s transactions need to be evaluated by the test scenarios.
In another example, the required coverage may indicate
which business processes, screens, and/or specific fields need
to be evaluated by running test scenario.

In one embodiment, achieving a required coverage is done
by evaluating a large number of test scenario templates and
estimating coverage achieved by individual templates and/or
subsets of templates. Following the evaluation, a subset of
templates that includes at least one template is suggested to
the user in order to achieve the required coverage. Optionally,
the suggested subset that includes at least one template is a

US 9,317,404 B1

179

subset with an essentially minimal number of templates and/
or involves performing an essentially minimal number of test
steps. It is to be noted that by an “essentially minimal” num-
ber it is meant a number close to the absolute minimal pos-
sible, for example up to 10% more than the absolute mini-
mum. In some cases, the absolute minimal number of
templates may be determined by an exhaustive evaluation of
all possible subsets of templates; however, this may prove
intractable if a large number of templates are involved.

In one embodiment, calculating the required coverage for a
certain user is based on a usage information of a certain user.
For example, by analyzing the usage information a list may be
prepared of certain modules, business processes, and/or
transactions the user frequently utilizes. This list can then be
used to guide a search for a certain subset of test scenario
templates that tests aspects of items on the list which need to
be tested.

Finding a minimal sized subset of template obtaining a
desired coverage need not require exhaustive search in every
case. Those skilled in the art may recognize that there are
structured methods for evaluating a search space of subsets of
templates such as branch-and-bound approaches, or A*
searches that enable finding the essentially minimal subset
without necessarily evaluating all subsets of templates. In
addition heuristic search methods may be used, such as simu-
lated annealing, genetic algorithms, and/or random walks in
order to quickly find subsets with a small number of templates
(but not necessarily minimal). Additionally, optimization
algorithms that involve constraint satisfaction may be used to
efficiently find an essentially minimal subset.

In one embodiment, a goal of a search for a subset of
templates that achieves a certain coverage is to find a subset of
templates, which involves a minimal amount of testing time
on the user’s part. Achieving the required coverage for the
certain user involving the shortest testing time for the user
may be done by estimating time to achieve a required cover-
age for the certain user by many templates (e.g., in a search
performed in the space of possible subsets of templates). And
after evaluating the time it takes to run each of the many
templates and/or subsets of templates, suggesting the certain
use utilize a subset that includes at least one of the templates,
that both achieves the required coverage and requires an
essentially minimal time to complete. In this case, the sug-
gested templates are likely to be templates relevant to sce-
narios that are expected to be used by the certain user, and are
likely to be spread to approximately achieve a uniform cov-
erage of the scenarios with the suggested templates.

In some cases, it is useful to refer to a coverage of a test
scenario template with respect to a test scenario. In one
embodiment, a template is said to cover a certain test scenario
if it involves essentially the same test steps as the test sce-
nario. Additionally or alternatively, coverage of a template
with respects to a test scenario may be the percentage of test
steps of the test scenario that are included in the template.
Similarly coverage of a subset of templates with respect to a
test scenario may refer to the test steps in the test scenario that
are included in at least one of the templates in the subset.

Importance of a test scenario for a certain user may also be
an objective that guides the suggestion of a template to the
certain user. In one embodiment, test scenario templates that
cover a test scenario are estimated to be important are sug-
gested to the certain user before other templates that are
estimated to be less important.

There are various ways in which importance of a test sce-
nario may be evaluated. In one example, the importance of a
certain test scenario is determined by frequency in which the
certain test scenario is used relative to frequency in which

10

15

20

25

30

35

40

45

50

55

60

65

180

other test scenarios are used. Thus, atest scenario often run by
the certain user may be deemed significantly more important
than a test scenario rarely run by the certain user. In another
example, importance of a certain test scenario is determined
by characteristics of users that run the certain test scenario,
compared to characteristics of users that run other test sce-
narios. For instance, if a certain test scenario is run primarily
by users that hold high positions in an organization’s hierar-
chy, it is likely that the certain test scenario is more important
than another test scenario that is used primarily by users on
the lower rungs of the organization’s hierarchy. In yet another
example, importance of a certain test scenario is determined
by a financial value associated with the certain test scenario
compared to a financial value associated with other test sce-
narios. For example, a test scenario that involves retaining an
unsatisfied customer may be given a high financial value for
the organization compared to another transaction which
involves sending customers a notice that their order is still
pending.

Profile of a User

A profile of a user may include data related to the user, an
organization to which the user belongs, and/or activity of the
user on a software systems, such as software systems associ-
ated with the organization. Optionally, at least some of the
data in a profile may be considered proprietary data. Option-
ally, the proprietary data may identify details regarding the
user and/or an organization related to the profile, such as an
organization to which the user belongs. In one example, a
profile may include proprietary data about the user (e.g., age,
address, languages, skills), and/or proprietary data related to
arole of the user in the organization (e.g., job title, placement
of user in organizational chart, and/or permissions and/or
privileges of the user). In another example, the profile may
include proprietary data related to the organization to which
the user belongs (e.g., field of operation, name and sizes of
departments, products and/or services provided by the orga-
nization, permissions and/or accounts of the organization,
and/or customers and/or suppliers of the organization). In yet
another example, proprietary data included in a profile of a
user may be indicative of activity of the user. In this example,
the activity may have been previously observed and/or
recorded (e.g., by monitoring of the user). Additionally or
alternatively, the activity may be predicted based on charac-
teristics of an organization to which the user belongs, the
position the user holds in the organization, and/or other
attributes of the user (e.g., permissions and/or accounts of the
user).

In one embodiment, a profile of a user includes data that is
indicative of test scenarios relevant to the user and/or tem-
plates of test scenarios relevant to the user. For example, the
profile may include attributes such as modules used by the
user, transactions used by the user (e.g., identifiers of trans-
actions and the number of times they were executed), and/or
characteristics derived from activity of the user (e.g., accesses
to databases, quantities of network data generated, reports
generated by the user). Optionally, a profile of a user may
include runs of test scenarios of the user, and/or results of a
summary and/or analysis of runs of test scenarios of the user.
For example, the profile may include a list of the transactions
that are executed often in runs of test scenarios of the user.
Optionally, a profile of a user may include information indica-
tive of test scenario templates utilized by a user (e.g., tem-
plates which the user ran instantiations of).

A profile of a user may be used in order to suggest to the
user to utilize a certain test scenario template. Optionally, the
template may be selected from among one or more test sce-
nario templates generated from clusters of runs of test sce-

US 9,317,404 B1

181

narios. For example, given a profile that indicates that a user
performs many transactions involving database updates, the
system may recommend for the user a template generated
from a cluster that contains runs of test scenarios that involve
database updates. In another example, if the profile of a user
contains samples of runs of test scenario run by the user, the
system may suggest to the user to use a template generated
from a cluster that contains test scenarios that are similar to a
test scenario from which a run in the profile was instantiated.
In yet another example, a profile includes state information
regarding an organization to which a user belongs, such as the
time zone and location of a certain site. This information may
be used to suggest a certain template for a user testing a
software system at the site. For example, a template that
involves a report of a vacation of a user in advance may be
relevant to an organization site located in France, but not for
a site in the US (where such a practice may not be typically
required).

Inone embodiment, a profile of auser includes permissions
of a user. For example, if a profile indicates that a user has
permission to approve vacations, the user may be suggested to
run a test scenario instantiated from a template that includes
such a task. However, if the user does not have such a per-
mission, then the certain template is irrelevant for the user. In
another example, a profile describes a position of the user in
the organization hierarchy. In this example, a first user may
belong to the marketing department, and thus has permission
to enter a new potential client in to the system. A second user
may belong to the sales department, and thus can send an offer
to a client. Thus, based on the profiles of the users, the system
may suggest relevant templates for the users: to the first user
atemplate that involves entering client data, and to the second
user a template that involves making an offer to a client, and
not vice versa.

In some embodiments, a profile may belong to an organi-
zation. For example, it may describe a generic user belonging
to the organization. Optionally, a profile of an organization
may be utilized to perform initial filtering of test scenario
templates for users belonging to the organization. For
example, according to a profile of an organization, the orga-
nization may not be authorized to run a test scenario instan-
tiated from a certain template (e.g., due to lack of permission).
This may make the template irrelevant for each and every user
belonging to the organization. However, if the organization is
authorized to run an instantiation of the test scenario tem-
plate, according to the profile of the organization, then a
profile of an individual user belonging to the organization
may need to be checked in order to determine if the template
is relevant to the individual user (e.g., to check whether the
user has permission to run a test scenario instantiated from the
template). In another example, a profile may indicate a
method in which the organization conducts business. For
instance, the profile may indicate a policy of making pay-
ments for goods. Thus, if the profile indicates that the orga-
nization always pays after receiving goods, a template that
describes advanced payment for goods is not relevant for any
user in that organization.

In one embodiment, a profile of a user may include usage
data of an organization to which a user belongs. For example,
the profile may describe which modules are relevant to orga-
nization. Based on the profile, a user will be suggested tem-
plates that are relevant to the organization. Similarly, the
profile may describe actions that users belonging to the orga-
nization may have permission to perform. For example, if
users of an organization are not authorized to access a certain

10

15

20

25

30

35

40

45

50

55

60

65

182

database, a user belonging to the organization will not be
provided with a template that includes an access to the certain
database.

In some embodiments, a profile of a user and/or an orga-
nization may represent usage of transactions by the user and/
or users belonging to the organization. Optionally, a profile
that represents usage of transactions may be represented in
various ways. The profile may include a list of runs of test
scenarios, clusters of runs, and/or transactions utilized by the
user. Optionally, the usage data may be represented as a
vector in which each dimension may correspond to a certain
transaction, cluster of runs, and/or template. In one example,
if a user utilized a transaction, a value of the vector in a
corresponding dimension is 1, otherwise it is 0. In another
example, a value of a dimension in the vector that corresponds
to a certain cluster of runs is set according to the number of
runs in the cluster that were run by the user. Thus, the more the
user used transactions with corresponding runs in the certain
cluster, the higher the corresponding value in the vector.

Having a vector representation for at least some of the
values in a profile makes it easier, in some embodiments, to
compare between profiles (e.g., to find similar vectors repre-
senting similar profiles of users). Additionally, vector repre-
sentation of profiles may make it easier to perform math-
ematical operations, such as vector dot-product or matrix
factorization.

A profile of a user may be utilized to customize a test
scenario template for the user. For example, by filtering the
test scenario template in order for it to be more appropriate for
the user. In one embodiment, a profile of the user may be used
to determine which test steps, from among the test steps
described in a test scenario template, are relevant for the user,
and optionally remove test steps that are irrelevant. For
example, a profile of the user may indicate that the user does
not confirm shipments. A test scenario template, suggested to
the user may include several test steps that culminate with a
test step involving confirming shipment. In such a case, the
last test step may be removed in order to make the test sce-
nario template more appropriate for the user. In one example,
a template may include values related to international ship-
ping; however, if the profile of the user indicates that the user
runs transactions that only involve domestic shipping, certain
values concerning international aspects of the transactions
may be removed from the template (e.g., destination country,
currency conversion rates). In another example, a template
that includes a transaction that is part of an employee evalu-
ation process may include values related managerial assess-
ment of the employee. If the profile of the user indicates that
the user is not a manager, then those details may be irrelevant
for the user. In this case, the user may receive a template that
only includes transactions in which self assessment of the
employee are performed. In another embodiment, a profile of
the user may be used to determine which values utilized in a
test scenario template may be appropriate for the user.
Optionally, values deemed irrelevant to the user may be
removed from the test scenario template suggested to the user.
Optionally, the user may be requested to provide relevant
values instead of the removed irrelevant values. For example,
aprofile of a user may indicate that the user deals exclusively
with domestic customers having domestic addresses. How-
ever, a test scenario template may include default values that
correspond to foreign addresses. In such a case, the foreign
addresses may be removed, and the user may be requested to
provide examples of domestic addresses.

Collaborative Filtering

In one embodiment, a profile of a certain user may be
indicative of transactions run by the certain user, and/or clus-

US 9,317,404 B1

183

ters containing runs of test scenarios run by the certain user
that use these transactions. Thus, the profile is indicative of a
usage pattern of the user (actual usage and/or expected
usage). Optionally, in order to suggest additional test sce-
narios, test scenario templates, and/or clusters for the user,
collaborative filtering methods, which rely on usage patterns
of other users, may be used.

Collaborative filtering is an algorithmic approach gener-
ally used for making automatic predictions (filtering) about
the interests of a user by collecting preferences or taste infor-
mation from many users (collaborating). For example, by
detecting similarities between the profile of the certain user
and profiles other users, it may be possible to suggest to the
certain user a template that was utilized by the other users, but
has not yet been utilized by the certain user. The underlying
assumption is that since the certain user and the other users
utilized some of the same templates (as evident from the
similarity of their respective profiles), it is likely that a tem-
plate that was utilized by the other users may be useful for the
certain user.

There are many algorithmic collaborative filtering
approaches that may be utilized by those skilled in the art to
make recommendations for a user based on similarities of a
profile of a certain user to profiles of other users. For example,
memory-based methods may be used to select a profile simi-
lar to the profile of the certain user, such as using nearest-
neighbor searches. In another example, model based algo-
rithms may rely on the profiles of the other users to generate
a model of test scenarios, templates, and/or clusters suitable
for the certain user. The model generation may utilize many
algorithmic approaches such as Bayesian networks, latent
semantic models, singular value decomposition (and/or other
forms of matrix factorization), and/or clustering. In still
another example, a combination of the memory-based and the
model-based collaborative filtering algorithms may be used.
In some cases, a hybrid approach that combines memory-
based and model-based approaches may help overcome
shortcomings of the individual approaches.

In one embodiment, a first profile of a first user is consid-
ered similar to a second profile of a second user if the first and
second profiles indicate that both profiles have a certain num-
ber of transactions, clusters, and/or templates in common, and
the certain number reaches a predetermined threshold. Addi-
tionally or alternatively, the first and second profile may be
considered similar if the first and second profiles have a
certain proportion of transactions, clusters, and/or templates
in common, and the certain proportion reaches a predeter-
mined threshold.

In another embodiment, a first profile of a first user is
considered similar to a second profile of a second user if a
similarity function applied to vector representations of the
first and the second profiles indicates that the similarity
between the vectors reaches a predetermined threshold. For
example, the similarity function may compute the angle (dot
product) between the vectors, and if the cosine of the angle is
larger than a certain predetermined threshold, the profiles
may be considered similar. In another example, the Pearson
correlation may be used to determine the similarity of two
vectors. In yet another example, similarity between binary
vectors representing profiles may be determined according to
the Hamming distance of the vectors (e.g., if the hamming
distance is below a predetermined threshold, the profiles are
considered similar).

In one embodiment, profiles utilized by a collaborative
filtering algorithm to suggest templates for a certain user to
utilize come from users belonging to organizations that are
different from an organization to which the certain user

10

15

20

25

30

35

40

45

50

55

60

65

184

belongs. Often, this can help suggest to the certain user test
scenario templates that may be useful for the certain user, but
are however unknown or not typically utilized within the
organization of the certain user. This may help increase the
scope, coverage, and/or diversity of aspects that are tested by
runs of test scenarios of the user, which can increase the
efficiency of test scenarios, possibly reducing the number of
test scenarios that need to be run.

Cleaning Proprietary Data

In one embodiment, a test scenario template generated
from one or more runs of test scenarios does not include
proprietary data captured during the stage of monitoring users
that ran the test scenarios. Optionally, the one or more runs of
test scenarios belong to a cluster and the test scenario tem-
plate is generated as a representative of the cluster.

In one embodiment, determination of whether certain data,
which appears in a run of a test scenario and/or is obtained
from processing data from the run, is proprietary data is based
on the repetitiveness of the data in runs of test scenarios. For
example, if a certain value appears in only a small proportion
of the runs, in runs of a small number of users, and/or runs
associated with a small number of organizations, the certain
value may be considered proprietary. Conversely, if a certain
value is the same in many runs, or in runs of at least a certain
proportion and/or number of the users, and/or is associated
with at least a certain proportion and/or number of organiza-
tions, that value may be considered to be non-proprietary.
Optionally, a predetermined proportion is used as a threshold
to determine if a certain value is proprietary or not. For
example, if a number of different users which ran runs of test
scenarios that included the certain value is less than the pre-
determined threshold, the value is considered proprietary for
those users who had runs that included the value. Otherwise,
it may be considered non-proprietary (since many users had
the value in one of their runs). It is to be noted, that “prede-
termined” refers to both a fixed value known a priori (e.g., a
threshold of 10 users) and/or a value derived from known
logic (e.g., 10% of the users).

In one embodiment, data for which one or more of the
following is true may be considered proprietary data associ-
ated with an organization and/or proprietary data belonging to
the organization: the data describes an aspect of the organi-
zation and/or a user belonging to the organization; the data
appears in a database of the organization; the data appears in
arunofatest scenario associated with the organization and/or
is derived from the run; and/or the data is generated by a
software system associated with the organization. For
example, any data on a server belonging to an organization
may be considered proprietary data associated with the orga-
nization. In another example, any data derived from analysis
of runs of'test scenarios associated with an organization may
be considered proprietary data of the organization. Addition-
ally or alternatively, data for which one or more of the fol-
lowing is true may be considered proprietary data of user
and/or proprietary data belonging to the user: the data
describes an aspect of a user; the data describes an organiza-
tion to which the user belongs; the data appears in a database
of the user; and/or the data appears in a run of a test scenario
run by the user.

It is to be noted that as used herein, a phrase like “propri-
etary data” may refer to proprietary data of an organization
and/or proprietary data of a user. Additionally, phrases like
“proprietary values” and “proprietary data” may be used
interchangeably in this disclosure.

In one example, proprietary values are removed from a test
scenario template generated from a certain cluster (i.e., one or
more runs belonging to the certain cluster were utilized to

US 9,317,404 B1

185

generate the template). Optionally, the proprietary values are
removed by a data cleaner module that operates on the gen-
erated template. Additionally or alternatively, removal of pro-
prietary data may be done by other modules belonging to the
system, such as a template generator, a customization mod-
ule, a ranking module, and/or a user interface. Optionally,
removing the proprietary values involves selecting a value
from the template, and removing the selected value from the
template if the selected value appears in less than a first
predetermined number of runs of test scenarios in the certain
cluster. Additionally or alternatively, the selected value may
be removed if it appears in runs belonging to the certain
cluster that are associated with less than a second predeter-
mined number of different organizations. In this example,
both the first predetermined number and the second predeter-
mined number are greater than one. Optionally, the first pre-
determined number and/or the second predetermined number
are proportional to the number of user with runs belonging to
the certain cluster and/or the number of organizations asso-
ciated with runs belonging to the certain cluster. For example,
the first predetermined number may be set to be the maximum
of two and 10% of the users with runs in the certain cluster.

Determining whether data is proprietary may utilize a pro-
file of a user and/or a profile of an organization. For example,
any data that appears in a profile of a user and/or an organi-
zation may be considered proprietary and thus not allowed to
be included in a template. In another embodiment, the profile
may indicate certain data is proprietary (e.g., by placing itaan
exclusion list which prohibits utilization of the data in tem-
plates).

In one embodiment, testing whether certain data is propri-
etary is done by querying a database (e.g., a database that
contains samples of proprietary data). Additionally or alter-
natively, the certain data may be submitted to a procedure that
evaluates the data to determine whether the data is likely to be
proprietary. For example, the procedure may perform seman-
tic and/or syntactic analysis of the data to check whether the
certain data has a certain meaning and/or contains certain
patterns that indicate that it is likely to be proprietary. For
example, the procedure may scan the certain data for strings
like “bank account”, “address”, and/or “social security num-
ber”.

In another embodiment, a user may provide feedback on
certain data which indicates whether the certain data is pro-
prietary. For example, the user may review values of data
fields prior to running a test scenario and indicate which
values the user considers proprietary. Additionally or alterna-
tively, while a test scenario is running, the user may mark
certain data as proprietary (e.g., data the user considers
should not be seen by the user or other users). Optionally, the
user may provide feedback the certain data via a user interface
on which the user is running the test scenario.

In yet another embodiment, determining whether a certain
value may be proprietary may be assisted by noting the
source, location, and/or data structure that contains the cer-
tain value. For example, in certain systems, a value that
appears in a checkbox on a screen is likely to be a default
value of the system, and thus not likely to be proprietary.
However, free text fields on screens are more likely to contain
data entered by a user, and are thus likely to be proprietary. In
a another example, in which the certain value appears in a
drop-down menu in a screen, it might be necessary to deter-
mine from the context whether values in the drop-down menu
are proprietary or not. Additionally, certain systems may be
built in such a way that makes it relatively easy to determine
which data is proprietary and which is not. For example, in

10

15

20

25

30

35

40

45

50

55

60

65

186

SAP ERP meta data, which typically includes general (non-
proprietary) data, is clearly marked.

In one embodiment, a value in a test scenario template that
is considered proprietary is removed from the template.
Optionally, the proprietary data is removed by a data cleaner
module, a template generator module, a customization mod-
ule, and/or another module and/or combination of modules.
In one example, a value may be deleted from a template;
consequently, the template may contain an indication of miss-
ing data (corresponding to the deleted value); prior to running
a test scenario based on the template and/or during the run of
the test scenario, the missing data needs to be provided (e.g.,
the user is prompted to provide it). Alternatively, a value in a
test scenario template that is considered proprietary may be
removed from the template by replacing it with a default or
“dummy” value.

In one embodiment, proprietary data is not included in a
template. For example, a module generating a template and/or
a module customizing a template, check whether certain val-
ues are proprietary (e.g., by checking whether a certain flag
related to the certain values is raised, or by submitting the
certain values to a procedure for evaluation). If the certain
values are deemed to be proprietary, they are not included in
the template.

Proprietary data may be removed from runs of test sce-
narios at different stages. In one embodiment, the proprietary
data is removed from runs of test scenarios as the runs are
recorded and/or identified. For example, a “scrubbed” version
of runs, which does not contain certain proprietary data, may
be the data that is provided to components of the system (e.g.,
a clustering module and/or template generator). Optionally,
determining what proprietary data is may relate to general
statistics (e.g., utilization of certain elements and/or values by
a certain proportion of organizations).

In another embodiment, proprietary data is removed from
runs after clustering of the runs is performed. Optionally,
determining what data in the runs should be considered pro-
prietary utilizes the fact that after clustering, clusters contain
similar runs. In one example, the fact that runs belong to
clusters may enable the identification of certain values that
are shared by many runs (which may indicate that the certain
values are not proprietary), or shared by a few runs (which
may indicate that the certain values are proprietary).

In some embodiments, test scenario templates are gener-
ated from one or more runs of test scenarios belonging to a
certain cluster. Optionally, the templates are generated in
such a way that they are not likely to include data that may be
easily traced to specific runs in the certain cluster, users that
ran runs belonging to the certain cluster, and/or organizations
associated with runs belonging to the certain cluster. In these
embodiments, generating a template may involve selecting a
value from a run of a test scenario belonging to the certain
cluster, checking whether the value appears in at least a first
predetermined number of the runs in the certain cluster;
checking whether the value appears in runs in the certain
cluster that are associated with at least a second predeter-
mined number of different organizations; and if both condi-
tions are positive, enabling the test scenario template to utilize
the selected value. Optionally, if at least one of the conditions
is negative the test scenario template is not allowed to utilize
the selected value.

In one embodiment, removing proprietary data from a test
scenario template generated from one or more runs of test
scenarios involves removing most output fields from the runs.
Consequently, most of the information generated in the runs
may be removed. In one example, most of the information
output in the runs is considered proprietary, and is therefore

US 9,317,404 B1

187

removed. Optionally, as a result of removing most of the
output fields, the test scenario template does not include
expected values for most test steps. Optionally, running an
instantiation of the test scenario template may require a user
to provide values in most of the test steps.

Customizing a Test Scenario Template

Test scenario templates generated from runs of test sce-
narios of users belonging to different organizations may not
be ideal for a certain user from a certain organization. For
example, the templates may include information such as val-
ues that do not suite the certain user and/or the certain orga-
nization, and/or include certain test steps that are irrelevant
for the certain user and/or the certain organization. It there-
fore may be beneficial to customize test scenario templates
for a certain user and/or a certain organization. Optionally,
customizing a test scenario template may be done as part of
generating the template (e.g., by the template generator), by
another module such as a customization module, or a combi-
nation of modules.

In some embodiments, customizing a test scenario tem-
plate involves adding to the test scenario template one or more
values that are relevant to a certain user and/or a certain
organization. Optionally, the one or more values that are
added replace existing values in the template that may be less
appropriate for the certain user and/or the certain organiza-
tion. Optionally, at least some of the values added to the
template by the customizing replace proprietary data that has
been removed from the template (e.g., by a data cleaner
module).

In some embodiments, customizing a test scenario tem-
plate is done using proprietary data related to a certain user
and/or a certain organization. The proprietary data may be
directly related to the certain user and/or the certain organi-
zation, such as internal organizational data of the certain user
and/or the certain organization, and/or data obtained by moni-
toring the certain user and/or users belonging to the certain
organization. Additionally or alternatively, the proprietary
data may be of a different user and/or different organization,
and based on similarity to the certain user and/or certain
organization the proprietary data is assumed to be useful for
customizing the template.

Proprietary data used to customize a test scenario template
may have various sources. In one embodiment, proprietary
data relevant to a certain user, for whom a test scenario tem-
plate is customized, is obtained by providing the test scenario
template to a different user, prompting the different user to
provide a missing value, and recording an input value pro-
vided by the different user. Alternatively, the same process
may be performed with the certain user, i.e., the test scenario
template is provided to the certain user, the certain user is
prompted to provide a value, and the value provided by the
certain user.

In another embodiment, the proprietary data relevant to the
certain user for whom the test scenario template is custom-
ized is obtained by guiding a user to provide the proprietary
data while semiautomatically executing an instantiation of
the test scenario template. Optionally, the user providing the
proprietary data is the certain user. Providing proprietary data
via semiautomatic execution may involve filling a value into
a field missing a value in an instantiation of the test scenario
template. This may be done by selecting a value from a
database related to the certain user and testing whether the
selected value is congruous with the field. If the selected value
is congruous with the field, filling the field with the selected
value. Otherwise, prompting the first user to provide a value
for the field missing a value. Optionally, selecting the value
utilizes a heuristics-based algorithm that is run on data from

20

25

30

35

40

45

55

188

multiple organizations. For example, the selection of the
value may be based in part on determining how often the
value is used by other organizations. Additionally or alterna-
tively, providing proprietary data via semiautomatic execu-
tion may involve filling a value into a field missing a value in
an instantiation of the test scenario template by identifying
users similar to the certain user. Following that, selecting a
value from runs of test scenarios of the users similar to the
certain user and then testing whether the selected value is
congruous with the field. If the selected value is congruous
with the field, the field may be filled with the selected value.
Otherwise, the certain user may be prompted to provide a
value for the field missing a value.

In one embodiment, proprietary data relevant to a certain
user, for whom a test scenario template is customized, is
obtained by marking locations of values that were removed
from the test scenario template, and directing attention of a
user to provide data appropriate for the marked locations.
Optionally, the user is the certain user for whom the template
is customized. Optionally, the values removed from the test
scenario template were removed by a data cleaner module.

One source of proprietary data useful for customizing a test
scenario template for a certain user may be a profile of the
certain user. For example, such a profile may be provided to a
module that performs customization of the template. Data in
the profile, such as proprietary information related to the user
and/or the organization may be inserted into the template. For
example, a profile of the certain user may include the user’s
name, address, job title, and/or employee number; these val-
ues may be inserted in their appropriate positions in a cus-
tomized template in order to save the certain user the time and
effort of inserting them when running an instantiation of the
template. In another example, the profile of the certain user
may include a list of customers the user works with, parts the
user frequently orders, and/or contact information of clients
the user frequently interacts with. These values may be auto-
matically inserted into a template in order to customize it and
make it more relevant to the certain user.

In one embodiment, a profile of a user that is used to
customize atest scenario template is a profile of a generic user
of'an organization. In this case, customizing the template may
utilize information that does not identify a specific user. For
example, to customize a template the system may use activity
data from the profile such as a list of modules that are fre-
quently run, but not use data such as an employee name of a
real employee.

Another source of proprietary data useful for customizing
a test scenario template for a certain user may be a data
generator related to the certain user and/or a certain organi-
zation to which the certain user belongs. For example, the
data generator may be a program that extracts values from a
database related to the certain organization. The database
may hold “real world” information such as actual customer
orders, which can be used to generate tests that are more
relevant.

In one embodiment, customizing a test scenario template
for a first user utilizes a customization module and involves
obtaining proprietary data relevant to the first user and sub-
stituting a non-empty subset of proprietary data removed
from the template with the obtained data. Optionally, the
obtained data undergoes processing prior to being entered
into the template.

In one example, the proprietary data relevant to the first
user is obtained from a previously monitored run of test
scenario associated with the first user; for instance, the run of
the test scenario may have been run by the first user, run by a
user associated to an organization to which the first user

US 9,317,404 B1

189

belongs, and/or a user with a similar organizational role as the
first user (e.g., both users are sales managers).

In another example, the proprietary data relevant to the first
user is obtained from parsing a manual test scenario associ-
ated with the first user in order to obtain a value associated
with the first user. For example, the manual test scenario may
be a script for running a test that is intended to be used by the
first user, a user associated to an organization to which the first
user belongs, and/or a user with a similar organizational role
as the first user. After obtaining the value associated with the
first user, a non-empty subset of the removed proprietary data
from the template is substituted with the obtained value.

In yet another example, the proprietary data relevant to the
first user is obtained from analyzing a database of the soft-
ware system associated with the first user to obtain a value
associated with the first user. The database may include data
on and/or be accessed by the first user, a user associated to an
organization to which the first user belongs, and/or a user with
a similar organizational role as the first user. After obtaining
the value associated with the first user, a non-empty subset of
the removed proprietary data from the template is substituted
with the obtained value.

In one embodiment, the customization module is also con-
figured to: provide the customized test scenario template to a
second user, prompt the second user to provide a missing
value, and record an input value provided by the second user.
Optionally, the first user and the second user are the same
user.

Values used for customization of templates may be
obtained, in some embodiments, by exploiting wisdom of the
crowd. This “wisdom” may be gained by analyzing runs of
users from different organization in order to find certain pat-
terns and common values. In one example, many organiza-
tions have a dummy customer entry for testing; for example,
a customer named “test”. Thus, entering “test” as a user is
likely to allow a test scenario to run, so a customization
module may try using the customer “test” in a template being
customized. In another example, SAP catalog numbers usu-
ally start from 1000, and 1000 usually describes a catalog
number for tests and not a real number. Thus, when custom-
izing atemplate, if a catalog number is needed, the value 1000
may be tried. In both of these examples, the knowledge of
which default values may be gained by examining runs of
users from different organizations. This allows a customiza-
tion module to discover from the crowd certain values that
may not be apparent to whomever is customizing the tem-
plate.

In embodiments described in this disclosure, after gener-
ating a test scenario template from one or more runs of test
scenarios (e.g., using a template generator), the template
might undergo further processing such as removal of propri-
etary data, customization, ranking, and/or the template may
be suggested to the user. Optionally, the one or more runs of
test scenarios belong to a certain cluster of similar runs of test
scenarios. FIG. 61A to FIG. 61G illustrate some, but not all,
combinations of system modules that may be used in embodi-
ments described in this disclosure to process the template
and/or suggest the template to a user.

FIG. 61A illustrates a combination of system modules that
may be used in embodiments in which a template generator
770 generates a test scenario template from one or more runs
of'test scenarios. The template is provided to a ranking mod-
ule 771 that may rank the template, for example, by assigning
it a score proportional to its relevancy to a certain user.
Optionally, the ranking module 771 receives a profile of a
certain user and/or a certain organization and utilizes data
from the profile, in order to rank the template. Following that,

30

40

45

50

190

a data cleaner 772 receives the template and may remove
proprietary data from the template. Optionally, the data
cleaner 772 receives a profile related to a certain user and/or
a certain organization, and utilizes the profile to remove cer-
tain proprietary data from the template. After removing pro-
prietary data from the template, the template from which
proprietary was removed is provided to a customization mod-
ule 773 that customizes the template by adding certain data to
the template. Optionally, the customization module 773
receives a profile of a certain user and/or a certain organiza-
tion and adds data from the profile, which relevant to the
certain user and/or organization, to the template. The custom-
ized template from which proprietary data was removed is
then provided to a user interface 774. Optionally, the user
interface 774 presents to a user a suggestion to run an instan-
tiation of the customized template from which proprietary
data was first removed.

Itis to be noted that in this disclosure, though modules may
beillustrated in figures as separate elements, in some embodi-
ments, they may be implemented as a single element that
performs the functionality of modules. For example, the soft-
ware module that implements the template generator 770 may
also perform the tasks of the data cleaner 772. In another
example, the customization module 773 and the data cleaner
772 are realized by the same software programs.

In other embodiments, after being processed by various
modules, a template generated by the template generator need
not be provided to a user interface. For example, it may be
stored in the system for further use. FIG. 61B illustrates a
similar portion of a system to the system illustrated in FIG.
61A, however in this system after being subjected to ranking,
removal of proprietary data, and customization, a template is
not presented to a user via a user interface.

The order in which a template may undergo processing by
system modules may differ between embodiments. For
example, FIG. 61C illustrates a combination of system mod-
ules which includes the template generator 770 which pro-
vides a template for customization by a customization mod-
ule 775. Following the customization, a data cleaner 776
removes proprietary data from the template. The template is
then provided to a user interface 777, for example, in order to
be suggested to a user. FIG. 61D illustrates a similar system,
however in it a template generated by the template generator
770 is first provided to a data cleaner 778. After removing
proprietary data from the template, the template is provided to
a customization module 779. The customized template may
then be presented to a user via the user interface 777.

In some embodiments, a user interface is not necessarily
used to suggest templates to a user; it may be utilized by other
system modules to perform their task. FIG. 61E illustrates a
combination of system modules that may be utilized in
embodiments, in which a ranking module 782 and a data
cleaner 780 interact with a user interface 781. For example,
the data cleaner 780 may present a template generated by the
template generator 770 to a user on the user interface 781, in
order for the user to mark and/or approve certain proprietary
data the data cleaner found in the template. Additionally, the
ranking module 782 may present a ranking of the template in
order for the user to verify the ranking and/or edit it. Option-
ally, the user may then determine what is to be done with the
template (e.g., should the user run it, save it for later, and/or
discard it). FIG. 61F illustrates a combination of system mod-
ules that may be utilized in embodiments, in which a customi-
zation module 775 utilizes a user interface to perform cus-
tomization of a template. For example, data that was added to
a template generated by the template generator 770 is pre-
sented to a user on a user interface 784 for approval and/or

US 9,317,404 B1

191

editing. Following that, the template may be subjected to
removal of proprietary data by a data cleaner 785. For
example, the proprietary data may be added by the user via the
user interface 784.

In some embodiments, a template that is generated by a
template generator does not undergo additional processing by
system modules. For example, as illustrated in FIG. 61G,
after being generated by the template generator 770, the tem-
plate may be sent to the user interface 774 (e.g., to be sug-
gested to a user).

Routes and Divergent Routes

A route, as used in some embodiments described in this
disclosure, defines a sequence of one or more elements
involved in the running of a test scenario. Optionally, an
element may be a test step, a transaction, and/or a screen.
Optionally, a run of the test scenario, such as a run obtained
from monitoring a user running the test scenario, describes
the sequence of one or more elements involved in the running
of the test scenario. For example, the run of a test scenario
may describe the test steps performed while running the test
scenario, the transactions executed while running the test
scenario, and/or the screens presented to a user while the user
ran the test scenario.

In one embodiment, a test scenario template defines certain
elements that are to be executed when running an instantia-
tion of the template, and an order of execution of the elements
in the instantiation. The template may include logic that deter-
mines the order according to runtime parameters. Thus, a test
scenario template defines one or more routes (also referred to
as “the template route/s”) that may be associated with the
template. Execution of an instantiation of the template, i.e.,
running a test scenario based on the template, is expected to
follow the template route/s. For example, if a template
includes screens 1-4 (and in that order), an instantiation of the
template is expected to present screen 1, followed by screen 2,
screen 3 and then screen 4.

In some embodiments, by examining a run of the test
scenario it may be determined whether during the running of
the test scenario a certain route was followed or not. For
example, if a sequence of one or more elements described in
the run corresponds to the sequence of the route, then it may
be assumed that the run follows the route. Conversely, if the
sequence of one or more elements described in the run
diverges from the sequence of the route, then it may be
assumed that the run diverges from the route.

In one embodiment, a test scenario template may have
more than one route that may be treated as a template route.
Optionally, the template may include alternative test steps
that may depend on a choice made by a user. For example,
when a user attempts to update a record, according to the
template, certain test steps are conducted if the update is
successful, while other steps are to be conducted if the update
attempt returns an error. In another example, a screen belong-
ing to the template provides the user with an option, such as
setting the price of a part. Based on the price range, certain
actions may be required: with a price of below $1000 the user
may continue as usual, however, a price of $1000 or more
requires the user to fill out a screen that generates a request for
manager approval. Thus, when examining routes a template
test scenario may define, it is possible for there to be more
than one template route.

There may be various relationships between routes (e.g.,
different routes identified in multiple runs of test scenarios).
For example, routes may be distinct of each other (e.g., they
do not contain any essentially similar elements). In another
example, a first route may be contained or partially contained
in a second route (e.g., there are one or more elements that are

10

35

40

45

55

192

essentially the same in both of the first and the second routes).
In the latter case, the first and/or the second routes may be
considered divergent routes, and/or one of the two routes may
be considered to diverge from the other. In particular, herein
we may consider a route that diverges from a template route.
Optionally, in cases where a certain test scenario template
may have a multiple template routes, a route may be consid-
ered a divergent route if it diverges from all of the multiple
template routes.

A divergent route does not completely follow a route to
which it is compared, such as a template route. By “not
completely follows™ it is meant that there is a substantial
difference between the divergent route and the route to which
it is being compared, such as an element not shared by both
routes. In one embodiment, a divergent route is characterized
by a different sequence of elements compared to a sequence
of elements defined by the template route, and/or different
configurations of the transactions used by the process under
test. For example, the sequence of the divergent route may
include a transaction not included in the sequence of the
template route. In another example, the sequence of the diver-
gent route may be missing a transaction that is in the sequence
of'the template route. In yet another example, the sequence of
the divergent route includes at least one transaction that is
executed out of order, with respect to an order of executing
transactions that is defined by the template route.

In some embodiments, for a first route to be considered a
divergent route with respect to a second route, the first and
second routes must have a certain degree of similarity.
Optionally, the first and second routes need to be considered
similar to each other. Additionally, the first and second route
may need to be considered essentially the same. Additional
information regarding how to interpret routes that are similar
and/or essentially the same is given below.

Routes followed by runs of test scenarios may diverge from
their respective template routes for various reasons.

Inone example, different organizations may configure and/
or use their systems in different ways. The different configu-
rations and/or ways of using the systems may change the
behavior of the transactions, and as a result, may change the
test scenarios that correspond to the transactions that behave
differently. Optionally, the different configurations may lead
to a different choice of transactions that are to be executed in
a test scenario, and/or a different order of execution of the
transactions. In one example, a different choice of transac-
tions and/or order of execution may represent an alternative
way to perform a certain task. Though a task is typically
performed in a first organization in a first method, which
corresponds to a first route, it may be performed in another
way, such as the way it is performed by a second organiza-
tions, represented by a second route. Thus, the second route,
which may be considered a divergent route with respect to the
first, may be a legitimate method for performing the task, and
follow a route that a user of the first organization may actually
end up following (e.g., through inadvertent configuration
change or serendipitous discovery of the user). Thus, it may
be advantageous for the first organization to also test the
second route.

In one example, a manual test scenario is interpreted by a
user and executed by a processor. The manual test scenario
may be based on a certain template (e.g., a script given to the
user), and as such, executing the script should lead to a run of
the test scenario that follows the template route. However, as
the user runs the test scenario, the user may perform certain
actions that do not follow the script; for example, the user may
determine that certain test steps in the script are incorrect or
irrelevant and thus should not be performed. Thus, decisions,

US 9,317,404 B1

193

reactions, and/or adaptations made by a user running a
manual test scenario can lead to divergent routes.

In another example, a test scenario may be an automatic
test scenario that is interpreted and executed by a processor.
The automatic test scenario may have a certain template (e.g.,
commands that execute a sequence of test steps), and as such,
executing the automatic test scenario should lead to a run of
the test scenario that follows the template route. However,
there may be cases in which the automatic test scenario uti-
lizes randomly generated or randomly selected values. For
example, to automatically fill certain fields, the automatic test
randomly generates values, or selects certain random records
from a database. Such an element of randomness which may
introduce unexpected values into a run of the automatic test
scenario may lead to unexpected behavior of the system (e.g.,
generation of certain errors or execution of different transac-
tions than were expected). Thus, a run of an automatic test
scenario may end up following a divergent route that diverges
from its template route.

In yet another example, a semiautomatic test scenario,
which is a combination of the aforementioned manual test
scenario and automatic test scenario, is run by a user. The
semiautomatic test scenario may end up not following its
template route due various reasons, as described above. For
example, actions of the user (e.g., values entered by the user)
may lead to unexpected behavior of the system. Similarly,
values randomly generated or automatically selected by the
system may also lead to unexpected behavior while running
the semiautomatic test scenario. Thus, a run of a semiauto-
matic may end up diverging from its intended template route.

A divergent route that diverges from a template route may
do so in various ways. A route analyzer may be configured to
identify various types of divergent routes, which diverge in
different ways from the template route.

In one embodiment, a route analyzer is configured to iden-
tify divergent routes that diverge from the template route and
later on converge back to the template route. FIG. 62A illus-
trates a template route 790 that includes a sequence of seven
screens (SCR1 to SCR7) that are to be executed in that order.
In one example, as illustrated in FIG. 62B, a divergent route
791 includes screens 1,2, and then two screens not included in
the template route, screens 9 and 10, and then includes
screens 4,5,6, and 7 from the template route. Note that screen
3 from the template route is not part of the divergent route, but
that need not be the case in all examples. In other examples, a
divergent route that diverges from the template route and later
on converges back to the template route may include all the
elements of the template route and in addition some elements
that are not part of the template route.

In another embodiment, a route analyzer is configured to
identify divergent routes that diverge from the template route
and do not converge back to the template route. In one
example, as illustrated in FIG. 62C, a divergent route 792 that
diverges from the template route 790 does not include screens
5,6, and 7 from the template route 790. Additionally, the
divergent route 792 includes screens 9 and 11, which are not
part of the template route 790. Note that even though screens
5,6, and 7 from the template route are not part of the divergent
route, which need not be the case in all examples. In other
examples, a divergent route that diverges from the template
route and does not converge back to the template route may
include all the elements of the template route and in addition
some elements that are not part of the template route that are
to be executed after the elements of the template route.

In yet another embodiment, a route analyzer is configured
to identify divergent routes that merge with the template
route. A divergent route 793 illustrated in FIG. 62D includes

10

15

20

25

30

35

40

45

50

55

60

65

194

screens 8,9, and 12, which are not part of the template route
790, and then four screens that are part of the template route
790 (screens 4,5,6, and 7). Note that screens 1,2, and 3 from
the template route 790 are not part of the divergent route 793,
but that need not be the case in all examples. In other
examples, a divergent route that merges with the template
route may include all the elements of the template route and in
addition some elements that are not part of the template route
that are to be executed before the elements of the template
route and/or after it.

In one embodiment, a route from identified in a run of a test
scenarios (i.e., the run follows the route), may be stored in a
database. Optionally, the route may be a divergent route with
respect to a certain template route corresponding to a certain
test scenario template. Optionally, storing the route involves
recording the run and/or information extracted from the run in
the database. Additionally or alternatively, storing the route
may involve recording elements of the route (e.g., test steps,
transactions, and/or screens) in the database. Additionally or
alternatively, storing the route may involve storing a value
computed from the run and/or the route, such as a hash value
computed from screen identification numbers and/or transac-
tion identification numbers. Optionally, storing a divergent
route that diverges from a template route may involve storing
information related to the template route and/or a test sce-
nario template which defines the template route. Optionally,
storing a divergent route that diverges from a template route
may involve storing information regarding one or more dif-
ferences between the route and the template route.

In one embodiment, storing a route may involve taking
note of information pertaining to a certain user that ran a run
which follows the route, and/or a certain organization asso-
ciated with the run. In one example, storing a route involves
adding the certain user and/or the certain organization to a list
corresponding to the route. In another example, storing a
route involves incrementing a counter corresponding to a
number of users and/or incrementing a counter that corre-
sponds to a number of organizations. Optionally, maintaining
the aforementioned lists and/or counters may enable determi-
nation of popularity of certain routes with users and/or orga-
nizations in general, and/or popularity of certain routes with
specific users and/or specific organizations.

In one embodiment, a route stored in a database may be
processed. For example, the route may be processed before
being received by the database, processed by the database
(e.g., before storage and/or after retrieval), and/or processed
after being delivered from the database.

In one example, processing a route may involve selecting
certain types of elements to be included in the route. For
example, processing a route may involve retaining transac-
tions included in the route, while other types of elements such
as descriptions of screens are not stored.

In another example, processing a route may involve alter-
ing values included in elements belonging to the route. For
example, data such as numbers or addresses may be converted
to a certain format. Additionally or alternatively, values may
undergo filtering, noise removal, and/or stemming of text.
Altering values included in elements may assist in standard-
izing stored routes and make it easier to retrieve and/or com-
pare routes.

In yet another example, processing a route may involve
filtering elements according to their popularity. For example,
certain elements that are not utilized in a sufficient number of
routes, by a sufficient number of users, and/or be associated
with a sufficient number of organizations may be excluded

US 9,317,404 B1

195

from a stored route. Low utilization may indicate that the
excluded elements are not likely to be useful for other orga-
nizations.

In still another example, processing a route may involve
removing elements that are considered proprietary and/or
removing values that may be considered proprietary. For
example, if screens included in a route include proprietary
field values, those values may be removed or replaced with
default values.

In some embodiments, similarity between two routes may
be characterized in different ways. For example, the two
routes may be characterized as being “similar to each other”
and/or “essentially the same”. Both terms indicate that the
two routes have a degree of similarity between them (e.g.,
they have certain elements in common); however, as used
herein, the term “essentially the same” typically indicates a
higher level of similarity between two routes compared to
similarity indicated by the term “similar to each other”. Usu-
ally, as used herein, any two routes that are referred to as being
essentially the same may also be considered similar to each
other, but the converse is not necessarily true.

In one embodiment, two routes are essentially the same if
they contain the same exact elements. For example, the two
routes involve the same screens (e.g., as determined by the
fields in the screens and/or screen identification codes). In
another example, two routes that are essentially the same
involve execution of the same transactions (e.g., as deter-
mined from commands involved in the transactions and/or
transaction identifiers). Optionally, the two routes that are
essentially the same may have different values associated
with one or more elements that are the same in both routes.
For example, two routes may be considered essentially the
same if they contain the same screens (e.g., the screens may
have the same identification numbers); however, different
customizations done to elements of each route may cause
certain field names and/or default values for fields to be
slightly different in the screens corresponding to the two
routes.

In another embodiment, two routes may be considered
similar to each other and/or essentially the same if they
involve similar elements. For example, the two routes involve
the similar screens (e.g., as determined by similar composi-
tion of fields in the two screens and/or similar values utilized
by the two screens identification codes). In another example,
the two routes may involve execution of the similar transac-
tions (e.g., as determined from similarity in commands
involved in the transactions and/or similar transaction iden-
tifiers).

Similarity between routes may depend on the number and/
or proportion of same or similar elements shared by the
routes. In one example, if two routes contain at least a first
number of same elements, they may be considered similar to
each other; and if the two routes contain at least a second
number of same elements, they may be considered essentially
the same. In this example, the second number may be higher
than the first number. For example, two routes may be con-
sidered similar if they both involve executing 3 identical
transactions, and they may be considered essentially the same
if they both involve executing 7 identical transactions. In
another example, if two routes have at least a first proportion
of similar elements, they may be considered similar to each
other; and if the two routes contain at least a second propor-
tion of similar elements, they may be considered essentially
the same. In this example, the second proportion may be
higher than the first proportion. For example, two routes may
be considered similar to each other if at least 50% of the
screens in a first rout of the two routes are similar to the

10

15

20

25

30

35

40

45

50

55

60

65

196

screens in the second route of the two; furthermore, if at least
80% of the screens in the first route are similar to the screens
in the second route, the two routes may be considered essen-
tially the same.

In yet another embodiment, similarity between two routes
is determined according to a distance metric that indicates
that the distance (difference) between them. Optionally, if a
distance between the two routes is below a first threshold, the
two routes are considered similar to each other; and if the
distance below them is below a second threshold, they are
considered essentially the same. Optionally the second
threshold is lower than the first. A distance metric may also
express a level of similarity between routes. In such a case, if
similarity between two routes exceeds a first threshold, the
two routes may be considered similar to each other, and if the
similarity exceeds a second threshold, possibly higher than
the first, the two routes may be considered essentially the
same.

In one example, routes are represented as a sequence of
transaction identifiers. A distance metric between two routes
may be a standard sequence similarity metric, such as edit
distance or Manhattan distance. In this example, two routes
may be considered essentially the same if the edit distance
and/or the Manhattan distance is below a predetermined
threshold; for instance, the predetermined threshold may be
20% of the length of the longest sequence corresponding to
one of the routes.

In another example, routes may be converted to a vector
representation. For example, each element may correspond to
one or more dimensions in a vector space. Optionally, certain
vector dimensions may correspond to the presence of certain
elements (e.g., a value of 1 is given if the element is present in
a route and O otherwise). Optionally, certain vector dimen-
sions may correspond to values associated with elements in
the routes. Those skilled in the art may recognize that there
are various ways in which a route may be represented as a
vector. The choice of representation may depend on various
factors, such as the length of the desired vectors and/or the
type of data included in routes. In one example, two routes
may be considered essentially the same if a distance between
vectors representing the two routes is below a predetermined
threshold. The cosine of the angle between two vectors may
be used to measure the distance (or similarity) between the
vectors. For example, if the angle between the two vectors, as
determined from the cosine, is smaller than a predetermined
threshold, the two routes corresponding to the vectors may be
considered essentially the same. Optionally, if the angle is
below a second, slightly higher predetermined threshold, the
two routes may be considered similar to each other.

While some of the above embodiments may be described in
the general context of program components that execute in
conjunction with an application program that runs on an
operating system on a computer, which may be a personal
computer, those skilled in the art will recognize that aspects
may also be implemented in combination with other program
components. Program components may include routines,
programs, modules, data structures, and other types of struc-
tures that perform particular tasks or implement particular
abstract data types. Moreover, the embodiments may be prac-
ticed with other computer system configurations, such as:
cloud computing, a client-server model, grid computing,
peer-to-peer, hand-held devices, multiprocessor systems,
microprocessor-based systems, programmable consumer
electronics, minicomputers, and/or mainframe computers.
The embodiments may also be practiced in a distributed com-
puting environment where tasks are performed by remote
processing devices that are linked through a communication

US 9,317,404 B1

197

network. In a distributed computing environment, program
components may be located in both local and remote com-
puting and/or storage devices. Some of the embodiments may
also be practiced in the form of a service, such as infrastruc-
ture as a service (IaaS), platform as a service (PaaS), software
as a service (SaaS), and/or network as a service (NaaS).

Embodiments may be implemented as a computer imple-
mented method, a computer system, and/or as a non-transi-
tory computer-readable medium. The non-transitory com-
puter-readable medium comprises program code which
provides, or participates in providing, instructions to a pro-
cessor. The non-transitory computer-readable medium may
be implemented, for example, via one or more of a volatile
computer memory, a non-volatile memory, a hard drive, a
flash drive, a magnetic data storage, an optical data storage,
and/or any other type of a tangible computer memory to be
invented that is not transitory signals per se. The program
code may be updated and/or downloaded to the non-transitory
computer-readable medium via a communication network
such as the Internet.

Herein, a predetermined value, such as a predetermined
threshold, may be a fixed value and/or a value determined any
time before performing a calculation that compares a certain
value with the predetermined value. A value may also be
considered to be a predetermined value when the logic, used
to determine whether a threshold that utilizes the value is
reached, is known before start of performing computations to
determine whether the threshold is reached.

In this description, references to “one embodiment” mean
that the feature being referred to may be included in at least
one embodiment of the invention. Moreover, separate refer-
ences to “one embodiment” or “some embodiments” in this
description do not necessarily refer to the same embodiment.
Additionally, references to “one embodiment” and “another
embodiment” may not necessarily refer to difterent embodi-
ments, but may be terms used, at times, to illustrate different
aspects of an embodiment.

The embodiments of the invention may include any variety
of combinations and/or integrations of the features of the
embodiments described herein. Although some embodiments
may depict serial operations, the embodiments may perform
certain operations in parallel and/or in different orders from
those depicted. Moreover, the use of repeated reference
numerals and/or letters in the text and/or drawings is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and/or con-
figurations discussed. The embodiments are not limited in
their applications to the details of the order or sequence of
steps of operation of methods, or to details of implementation
of devices, set in the description, drawings, or examples.
Moreover, individual blocks illustrated in the figures may be
functional in nature and therefore may not necessarily corre-
spond to discrete hardware elements.

While the methods disclosed herein have been described
and shown with reference to particular steps performed in a
particular order, it is understood that these steps may be
combined, sub-divided, and/or reordered to form an equiva-
lent method without departing from the teachings of the
embodiments. Accordingly, unless specifically indicated
herein, the order and grouping of the steps is not a limitation
of the embodiments. Furthermore, methods and mechanisms
of the embodiments will sometimes be described in singular
form for clarity. However, some embodiments may include
multiple iterations of a method or multiple instantiations of a
mechanism unless noted otherwise. For example, when a
processor is disclosed in one embodiment, the scope of the
embodiment is intended to also cover the use of multiple

20

30

40

45

50

55

198

processors. Certain features of the embodiments, which may
have been, for clarity, described in the context of separate
embodiments, may also be provided in various combinations
in a single embodiment. Conversely, various features of the
embodiments, which may have been, for brevity, described in
the context of a single embodiment, may also be provided
separately or in any suitable sub-combination. Embodiments
described in conjunction with specific examples are pre-
sented by way of example, and not limitation. Moreover, it is
evident that many alternatives, modifications, and variations
will be apparent to those skilled in the art. It is to be under-
stood that other embodiments may be utilized and structural
changes may be made without departing from the scope ofthe
embodiments. Accordingly, this disclosure is intended to
embrace all such alternatives, modifications, and variations
that fall within the spirit and scope of the appended claims and
their equivalents.

What is claimed is:

1. A computer system configured to generate a test scenario
template, comprising:

at least one processor and memory; the at least one proces-
sor and the memory cooperating to function as:

a monitoring module configured to monitor users belong-
ing to different organizations to identify runs of test
scenarios run on software systems belonging to the dif-
ferent organizations; wherein each organization of the
different organizations has a different composition of
shareholders;

a clustering module configured to cluster the runs of the test
scenarios to clusters comprising similar runs of test sce-
narios;

a cluster selector configured to select from the clusters a
certain cluster comprising a first run of a first test sce-
nario and a second run of a second test scenario; wherein
the first run is associated with a first organization
belonging to the different organizations, the second run
is associated with a second organization belonging to the
different organizations, the first run is not identical to the
second run, and the first organization is not the second
organization; and

a template generator configured to generate a test scenario
template based on the first and second runs; wherein the
test scenario template identifies a first transaction
executed in the first run, a second transaction executed in
the second run and possible values for running the first
and second transactions, wherein the second transaction
is different from the first transaction.

2. The computer system of claim 1, further comprising a
template filter configured to receive a profile of a certain user
and to test whether the test scenario template is relevant to the
certain user based on the user profile; and further comprising
a user interface, coupled to the template filter, configured to
suggest a relevant test scenario template to the certain user.

3. The computer system of claim 1, wherein the test sce-
nario template further comprises values, captured by the
monitoring module, which were used by at least one of the
users; and the template generator is further configured to
remove from the test scenario template a value that is
expected to be irrelevant to a certain user.

4. The computer system of claim 1, wherein the test sce-
nario template identifies a transaction used in the first and
second runs, and possible values for running the transaction;
and wherein at least one of the possible values for running the
transaction does not appear in each of the first and second
runs.

5. The computer system of claim 1, wherein the test sce-
nario template identifies a transaction used in the first and

US 9,317,404 B1

199

second runs, and possible values for running the transaction;
and wherein the test scenario template includes a combina-
tion of the possible values, and the combination does not
appear in any of the first and second runs.

6. The computer system of claim 1, further comprising a
customization module configured to customize the test sce-
nario template by adding thereto proprietary data relevant to
a certain user for whom the test scenario template is custom-
ized.

7. The computer system of claim 6, wherein the certain user
for whom the test scenario template is customized is a generic
user belonging to a specific organization.

8. The computer system of claim 1, wherein the template
generator is further configured to remove from the test sce-
nario template proprietary data, captured by the monitoring
module, from less than two users belonging to different orga-
nizations.

9. The computer system of claim 1, wherein the template
generator is further configured to receive the certain cluster
from the clustering module, and to select the first and second
runs from the certain cluster.

10. The computer system of claim 1, wherein the clustering
module is configured to process one or more of the following
logged activities: a list of users who ran the test scenarios, an
analysis of access to a database, messages returned from
executed transactions, values returned by fields, and proce-
dures utilized by a test scenario.

11. A computer implemented method for generating a test
scenario template, comprising:

monitoring users belonging to different organizations to

identify runs of test scenarios run on software systems
belonging to the different organizations; wherein each
organization of the different organizations has a differ-
ent composition of shareholders;

clustering the runs to clusters comprising similar runs of

test scenarios;
selecting from the clusters a certain cluster comprising a
first run of a first test scenario and a second run of a
second test scenario; wherein the first run is associated
with a first organization belonging to the different orga-
nizations, the second run is associated with a second
organization belonging to the different organizations,
the first run is not identical to the second run, and the first
organization is not the second organization; and

generating, based on the first and second runs, a test sce-
nario template representing the certain cluster; wherein
the test scenario template identifies a first transaction
executed in the first run, a second transaction executed in
the second run and possible values for running the first
and second transactions, wherein the second transaction
is different from the first transaction.

12. The computer implemented method of claim 11, fur-
ther comprising receiving a profile of a certain user; deter-
mining that the test scenario template is relevant to the certain
user based on the user profile; and suggesting to the certain
user to utilize the test scenario template.

13. The computer implemented method of claim 12,
wherein the test scenario template further comprises values,
captured during the monitoring, which appear in at least one
of'the first and second runs; and further comprising removing
from the test scenario template a value that is expected to be
irrelevant to the certain user.

14. The computer implemented method of claim 11,
wherein the test scenario template identifies a transaction
used in the first and second runs, and possible values for
running the transaction; and wherein at least one of the pos-

10

25

30

35

40

45

200

sible values for running the transaction does not appear in
each of the first and second runs.

15. The computer implemented method of claim 11,
wherein the test scenario template identifies a transaction
used in the first and second runs, and possible values for
running the transaction; and wherein the test scenario tem-
plate includes a combination of the possible values, and the
combination does not appear in any of the first and second
runs.

16. The computer implemented method of claim 11, fur-
ther comprising removing from the test scenario template
proprietary data which appears in runs of less than two users
belonging to different organizations.

17. The computer implemented method of claim 11,
wherein similar runs of test scenarios are characterized by
having at least one of: essentially same fields, essentially
same field values, similar combinations of fields, similar
combinations of field values, similar execution of transac-
tions, similar user interactions, similar requests, similar calls
to procedures, similar executions.

18. The computer implemented method of claim 11,
wherein the clustering of the runs of the test scenarios to
clusters comprising similar runs of test scenarios is based on
counting number of similar fields used in screens correspond-
ing to the runs; the more similar fields, the more similar the
runs of the test scenarios are considered to be.

19. The computer implemented method of claim 11,
wherein the clustering of the runs of test scenarios to clusters
comprising similar runs of test scenarios is based on similar-
ity between order of displaying similar fields in screens cor-
responding to the runs; the closer the orders, the more similar
the runs are considered to be.

20. The computer implemented method of claim 11,
wherein the clustering of the runs of test scenarios to clusters
comprising similar runs of test scenarios is based on one or
more of the following: similarity between executed proce-
dures associated with the test scenarios, order of executing
the procedures, and transactions executed as part of runs of
test scenarios.

21. The computer implemented method of claim 11,
wherein monitoring the users comprises registering transac-
tions in the identified runs that were tested by the users.

22. The computer implemented method of claim 11, fur-
ther receiving a value representing a required coverage for a
certain user, and achieving the required coverage with a sub-
stantially minimal number of test scenario templates by esti-
mating coverage of testing achieved by at least three tem-
plates associated with at least three different organizations
before suggesting the certain user to utilize at least one of the
templates.

23. The computer implemented method of claim 22, fur-
ther comprising calculating the required coverage based on a
usage information of the certain user.

24. The computer implemented method of claim 11, fur-
ther comprising achieving a required coverage for a certain
user within shortest time for a user that runs test scenarios
based on templates of test scenarios, by estimating time to
achieve a required coverage for the certain user by at least
three templates associated with at least three different orga-
nizations before suggesting the certain user to utilize at least
one of the templates.

25. The computer implemented method of claim 11, fur-
ther comprising estimating importance of a test scenario for a
certain user; and suggesting to the certain user templates
corresponding to most important test scenarios essentially
first.

US 9,317,404 B1

201

26. A non-transitory computer-readable medium for use in
a computer to generate a test scenario template, the computer
comprises a processor, and the non-transitory computer-read-
able medium comprising:
program code for monitoring users belonging to different
organizations to identify runs of test scenarios run on
software systems belonging to the different organiza-
tions; wherein each organization of the different organi-
zations has a different composition of shareholders;
program code for clustering the runs of the test scenarios to
clusters comprising similar runs of test scenarios;
program code for selecting from the clusters a certain clus-
ter comprising a first run of a first test scenario and a
second run ofa second test scenario; wherein the first run
is associated with a first organization belonging to the
different organizations, the second run is associated with
a second organization belonging to the different organi-
zations, the first run is not identical to the second run,
and the first organization is not the second organization;
and

10

15

202

program code for generating, based on the first and second
runs, a test scenario template representing the certain
cluster; wherein the test scenario template identifies a
first transaction executed in the first run, a second trans-
action executed in the second run and possible values for
running the first and second transactions, wherein the
second transaction is different from the first transaction.

27. The non-transitory computer-readable medium of
claim 26, further comprising program code for receiving a
profile ofa certain user, program code for determining that the
test scenario template is relevant to the certain user based on
the user profile, and program code for suggesting to the cer-
tain user to utilize the test scenario template based on the
profile.

28. The non-transitory computer-readable medium of
claim 27, wherein the test scenario template further com-
prises values, captured during the monitoring, which were
used by at least one of the users; and further comprising
program code for removing from the test scenario template a
value that is expected to be irrelevant to the certain user.

#* #* #* #* #*

